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Abstract

We study algorithms for online change-point detec-
tion (OCPD), where samples that are potentially
heavy-tailed, are presented one at a time and a
change in the underlying mean must be detected as
early as possible. We present an algorithm based
on clipped Stochastic Gradient Descent (SGD),
that works even if we only assume that the second
moment of the data generating process is bounded.
We derive guarantees on worst-case, finite-sample
false-positive rate (FPR) over the family of all dis-
tributions with bounded second moment. Thus, our
method is the first OCPD algorithm that guarantees
finite-sample FPR, even if the data is high dimen-
sional and the underlying distributions are heavy-
tailed. The technical contribution of our paper is to
show that clipped-SGD can estimate the mean of a
random vector and simultaneously provide confi-
dence bounds at all confidence values. We combine
this robust estimate with a union bound argument
and construct a sequential change-point algorithm
with finite-sample FPR guarantees. We show em-
pirically that our algorithm works well in a vari-
ety of situations, whether the underlying data are
heavy-tailed, light-tailed, high dimensional or dis-
crete. No other algorithm achieves bounded FPR
theoretically or empirically, over all settings we
study simultaneously.

1 INTRODUCTION

Online change-point detection (OCPD) is a fundamental
problem in statistics where instantiations of a random vari-
able are presented one after another and we want to detect

* Correspondence to Abishek Sankararaman :
abisanka@amazon.com

if some parameter or statistic corresponding to the underly-
ing data generating distribution has changed. This problem
has been widely studied in machine learning, mathematical
statistics and information theory over the past century. In
part, this is due to the wide-ranging applications of OCPD
to computational biology [Muggeo and Adelfio, 2011], on-
line advertising [Zhang et al., 2017], cyber-security [Os-
anaiye et al., 2016, Kurt et al., 2018, Polunchenko et al.,
2012], cloud-computing [Maghakian et al., 2019], finance
[Lavielle and Teyssiere, 2007], medical diagnostics [Yang
et al., 2006, Gao et al., 2018] and robotics [Konidaris et al.,
2010]. We refer interested readers to the recent surveys of
[Aminikhanghahi and Cook, 2017] and [Xie et al., 2021] for
details of applications of OCPD. These surveys build upon
the classical texts in change-point detection obtained over
the last decade [Basseville et al., 1993, Tartakovsky, 1991,
Krichevsky and Trofimov, 1981].

Classical results for OCPD have focused on algorithms
that assume known distributions for either one or both of
the pre- and post-change data [Wald, 1992, Page, 1954,
Shiryaev, 2007, Lorden, 1971, Pollak, 1985, Ritov, 1990,
Moustakides, 1986, Tartakovsky, 1991]. In recent years, al-
gorithms have been developed for cases when the pre- and
post- change distributions are unknown, but belong to a para-
metric class such as the exponential family [Lai and Xing,
2010, Fryzlewicz, 2014, Frick et al., 2014, Cho, 2016]. Non-
parametric algorithms have been developed in [Padilla et al.,
2021, Madrid Padilla et al., 2021] and the references therein,
but they only give asymptotic guarantees. The algorithms of
[Adams and MacKay, 2007, Lai and Xing, 2010, Maillard,
2019, Alami et al., 2020] have finite-sample guarantees,
but either rely on parametric assumptions such as an expo-
nential family, or on tail assumptions such as sub-gaussian
distribution families. The works of [Bhatt et al., 2022] and
[Li and Yu, 2021] build upon the work in [Niu and Zhang,
2012], and give algorithms for multiple change-points with
possibly heavy-tailed data in the offline case with all data
available up-front. The works of [Wang and Ramdas, 2022,
2023, Shekhar and Ramdas, 2023] give OCPD algorithms
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for heavy-tailed, but uni-variate data.

In many modern applications such as cloud-computing and
monitoring, data is known to often be heavy-tailed [Nair
et al., 2022, Loiseau et al., 2010, Nizam et al., 2016] and
too complex to model with any simple parametric family
[Barnett and Onnela, 2016, Hallac et al., 2015, Dartmann
et al., 2019]. Given the velocity, variety and volume of mod-
ern data streams, performance of change-point detection
is measured through false-positive rates in order to com-
bat alert fatigue [Ruff et al., 2021], and algorithms must
work for streams that have multiple change points. Moti-
vated by these requirements, we seek an OCPD algorithm
that simultaneously meet the following desiderata : it (i)
detects multiple change-points, (ii) makes no parametric
assumptions on the distribution of data, (iii) works with po-
tentially heavy-tailed data, (iv) works for high-dimensional
data streams, and (v) guarantees finite sample FPR.

1.1 MAIN CONTRIBUTIONS

Our paper is the first to give an online algorithm satisfying
all the 5 desiderata listed above. Specifically, our algorithm
gives finite sample guarantees for FPR and detection-delay
without assuming that data comes from a specific parametric
family or assuming strong tail conditions - such as that the
data have sub-gaussian distributions. No previous algorithm
for OCPD simultaneously achieves all desiderata. Our main
technical contribution is to provide a clipped-SGD algo-
rithm with finite sample confidence bounds for heavy-tailed
mean estimation, that hold for all confidence values simul-
taneously, a result of independent interest. We use these
bounds to build a OCPD algorithm with finite sample FPR.

We further show good empirical performance across a va-
riety of data streams with heavy-tailed, light-tailed, high
dimensional or discrete distributions. However while our
algorithm is designed to work across different distributions,
we observe theoretically and empirically that when data
has additional structure such as being one-dimensional with
sub-gaussian tails or is binary, then specialized OCPD algo-
rithms for those cases yield better results than our method.
Closing these gaps is an ongoing direction of research.

2 PROBLEM SETUP

At each time t, a random vector Xt ∈ Rd is revealed to
an OCPD algorithm. Xt has a probability measure and
expectation denoted by Pt and Et respectively, and mean
Et[Xt] ∈ Rd. Subsequently, using all the samples observed
so far - X1, · · · , Xt - the algorithm outputs a binary deci-
sion denoting whether a change in mean has occurred since
time t = 1 or the last time a change was output by the algo-
rithm, whichever is larger. The goal of the OCPD algorithm
is identify the change points as quickly as possible after they

occur, with bounded false-positive rate (FPR). The observed
datum (Xt)t≥1 are independent, although not identically
distributed with piece-wise constant mean.

Definition 2.1 (Piece-wise constant mean process). Let T
be the time horizon (stream-length) and let QT < T be the
total number of change-points. A set of strictly increasing
time-points 1 < τ1 < τ2 · · · < τQT+1 := T + 1 are called
change-points, if for all c ∈ {1, · · · , QT }

• ∀t ∈ [1, T ], Xt ∼ Pt independently.

• ∀t ∈ [τc, τc+1), the mean Et[Xt] := θc of the observa-
tion is constant and does not depend on t.

• ∀c ∈ [1, QT ], θc ̸= θc+1.

Thus, a piece-wise constant mean process is identified by the
quadruple M := (T,QT , (τc)

QT

c=1, (Pt)
T
t=1). Throughout,

we use probability and expectation operators P and E, to
denote the joint product probability distribution (Pt)

T
t=1.

2.1 ASSUMPTIONS

Let P be a family of probability measures on Rd such that
the probability distributions Pt, for all t, are from this family,
i.e., Pt ∈ P , ∀t ∈ [1, T ]. Throughout this paper, we make
the following non-parametric assumptions on the family P .

Assumption 2.2. There exists a convex compact set Θ ⊂
Rd known to the algorithm, such that for all P ∈ P ,
EX∈P[X] ∈ Θ. In words, the mean of all the distributions
in the family belong to a known bounded set Θ such that
maxθ1,θ2∈Θ ∥θ1 − θ2∥ := G.

Assumption 2.3. There exists σ > 0 known to the algo-
rithm, such that for all P ∈ P and θ ∈ Θ, EX∼P[∥X −
EX∼P[X]∥22] ≤ σ2. In words, the second moment is uni-
formly bounded for all distributions in P .

These assumptions are very general and encompass a wide
range of families such as any bounded distribution, the set
of sub-Gaussian distributions and heavy-tailed distributions
that do not have finite higher moments. We seek algorithms
that work without knowing the length of the data stream, the
number of change-points and that do not make any assump-
tions on the underlying distributions generating the samples,
beyond Assumptions 2.2 and 2.3.

2.2 PERFORMANCE MEASURES

Any OCPD algorithm is measured by two performance met-
rics – (i) False-positive rate and (ii) Detection delay. We set
notation to define these measures.
Notation 2.4. For every 1 ≤ r ≤ s < T , we denote by
Xr:s := (Xr, Xr+1, · · · , Xs) to be the set of observed
vectors from time r to time s, with both end-points r and s
inclusive.



Definition 2.5 (OCPD algorithm). A sequence of measur-
able functions A := (At)t≥1 is called an OCPD algorithm
if for every time t ≥ 1, At ∈ {0, 1} and is measurable with
respect to the sigma algebra generated by X1:t. The inter-
pretation is that if At = 1 for some t, then the algorithm
has detected a change at time t and if At = 0, no change is
detected at time t.

Notation 2.6. For an OCPD algorithmA and for all t ∈ [T ],
denote by R(A)(t) ∈ N to be the random variable denoting
the number of detections made till time t, i.e., R(A)(t) =∑t

s=1As.
Notation 2.7. For an OCPD algorithm A, and every r ∈ N
and, denote by t(A)

r as the stopping time

t(A)
r := min(inf{t ∈ [0, T ] s.t. R(A)(t) ≥ r}, T + 1),

where the inf of an empty set is defined to be∞. In words,
t
(A)
r is the stopping time when the OCPD algorithm detects

a change for the rth time, or T + 1, whichever is larger.

Definition 2.8 (False Positive Detection). The rth detection
of an OCPD algorithm A is said to be a False Positive, if
there exists no change-point between the r − 1th and the
rth detection. Formally, denote by the indicator (random)
variable χ(A)

r = 1( ̸ ∃c ∈ [1, QT ] s.t. τc ∈ (t
(A)
r−1, t

(A)
r ]) to

denote if the rth detection of A is a false-positive. Note that
by definition, on the event that R(A)(T ) < r, χ(A)

r = 0.

Definition 2.9 (False Positive Rate (FPR)). An OCPD al-
gorithm A is said to have false-positive rate bounded by
δ ∈ (0, 1) if

sup
M

E

[∑T
r=1 χ

(A)
r

R(A)(T )
1(R(A)(T ) > 0)

]
≤ δ. (1)

In words, an OCPD algorithm A has bounded false positive
rate, if for every piece-wise constant mean process M, the
expected fraction of false-positives made by the algorithm
A is bounded by δ. In Equation (1), we take the sum till T
because that is the maximum number of possible change
points detected. If an algorithm only detects s < T change
points, then by definition χ(A)

r = 0 for all r > s.

Definition 2.10 (Worst-case Detection Delay). For n ∈ N
and ∆ > 0, let X1, X2, · · · , Xn, Xn+1, · · · be an infinite
stream with the following distribution. For every t < n,
Xt

ind∼ Pt with EX∼Pt
[X] = θ1 ∈ Θ and for every t ≥ n,

Xt
ind∼ Pt with EX∼Pt

[X] = θ2 ∈ Θ with ∥θ1 − θ2∥ = ∆.
Let M(n,∆) denote all such infinite piece-wise constant
mean process. An algorithm A is said to have worst-case
detection delay D(∆, n, δ′), if

sup
M(n,∆)

P
[
inf{t > n: At = 1}−n ≥ D(∆, n, δ′)

]
≤ δ′

(2)

holds for all n ∈ N, ∆ > 0 and δ′ ∈ (0, 1).

In words, the detection delay function D(∆, n, δ′) is such
that for every admissible process M(n,∆) that has a single
change-point at time n with jump magnitude ∆, algorithm
A detects the change-point before time n + D(∆, n, δ′),
with probability at-least 1 − δ′. Note that the delay met-
ric is measured on data streams with exactly one change-
point. Defining detection delay for streams with multiple
change-points is ambiguous as there could be missed detec-
tions, with only a subset of the change-points being detected
[Alami et al., 2020], [Maillard, 2019]. The main question
this paper studies is

For each δ ∈ (0, 1), does there exists an OCPD algorithm
with FPR bounded by δ and having small worst-case

detection-delay that only makes Assumptions 2.2 and 2.3 ? .

Observe that it is trivial to achieve a FPR of 0 for ex-
ample the constant function where A(·) = 0, i.e., an al-
gorithm that never detects change-point at all. However,
this algorithm has a worst-case detection-delay of∞, i.e.,
D(∆, n, δ′) = +∞ for all ∆ > 0, n ∈ N and δ′ ∈ (0, 1).
Thus, the challenge is to design an algorithm that satisfies
the FPR constraint of δ while having small, finite worst-case
detection delay, without making parametric assumptions on
the underlying data generating distributions.

3 ONLINE ROBUST MEAN ESTIMATION

The central workhorse of our change-point detection al-
gorithm is heavy-tailed online mean estimation. Suppose
X1, X2, · · · are a sequence of independent random vectors,
with the means Et[Xt] = θ∗ ∈ Θ being a constant inde-
pendent of time t. Let (θ̂t)t≥1 be a sequence of random
variables such that θ̂t is an estimate of θ based on the sam-
ples X1, · · · , Xt defined through clipped-SGD algorithm
described as follows. For a given non-negative sequence
(ηt)t≥1 and λ > 0, the estimate θ̂0 ∈ Θ is arbitrary, θ̂t for
each t ≥ 1, is given by

θ̂t :=
∏
Θ

(θ̂t−1 − ηtclip(Xt − θ̂t−1, λ)), (3)

where,
∏

Θ is the projection operator onto the convex com-
pact set Θ and for every x ∈ Rd and λ > 0,

clip(x, λ) = xmin

(
1,

λ

∥x∥

)
. (4)

Our main result on the convergence of the estimator θ̂t to the
true θ∗ with increasing number of samples t is the following.

Theorem 3.1. For all times t ≥ 1, when clipped SGD
in Equation (3) is run with λ = 2G and ηt = 2

(t+γ) for
γ = max

(
120λσ(σ + 1), 320σ2 + 1

)
, then for every t ≥ 1



and every δ ∈ (0, 1),

P
[
∥θ̂t − θ∗∥22 ≥ B(t, δ)

]
≤ δ

t(t+ 1)
,

where

B(t, δ) := Ct

[
γ2G2

(t+ 1)2
+

(
16σ2

λ
+ 4σ2

)
1

2(t+ 1)

+
96λ2 ln

(
2t2(t+1)

δ

)
σ(σ + 1)

(t+ γ)
√
t+ 1

]
, (5)

and Ct = max( 1024σ
4

G2λ2 ,
8λ

√
ln
(

2t2(t+1)
δ

)
γ2G ).

Corollary 3.2. There exists an universal constant A > 0
such that for all t ≥ 1, when clipped SGD in Equation (3)
is run with parameters in Theorem 3.1

P

∥θ̂t − θ∗∥ ≥ Amax

 σ3

√
t
,
σ
√
ln
(
t3

δ

)
√
t

 ≤ δ

t(t+ 1)
,

holds for every δ ∈ (0, 1).

Proof is in Appendix in Section B and uses tools from
[Bubeck, 2015], [Gorbunov et al., 2020, Tsai et al., 2022]
and [Victor, 1999].

Remark 3.3. Compared to [Tsai et al., 2022], we do not
need the failure probability δ in the input and we can give
simultaneous confidence intervals for all failure probabilities
δ. In contrast, the algorithm of [Tsai et al., 2022] requires
δ ∈ (0, 1) as an input and only guarantees that the estimate
mean is close to the true mean, upto error probability of δ.
However, the bound in Theorem 3.1 is off by logarithmic
factors compared to [Tsai et al., 2022]. Concretely, Ct =
O(1) for the algorithm of [Tsai et al., 2022], while it is
O(log(t/δ)) for us. This is the price to have confidence
intervals hold for all failure probabilities simultaneously as
opposed to just having one single failure probability.

Remark 3.4. Compared to the setting of [Tsai et al., 2022],
our setting is weaker as we assume that the domain Θ is
compact with finite diameter G. This is what enables us to
use an appropriately tuned learning rate and clipping param-
eter to make the algorithm any-time and obtain confidence
intervals at all failure probabilities simultaneously. It is an
open question whether the assumption that Θ is compact can
be relaxed and if we can still make guarantees confidence
interval holding for all failure probabilities δ for all t for
heavy tailed distributions.

Remark 3.5. The constants in Theorem 3.1 are not optimal.
In Section 5, we suggest an alternative set of constants that
work well empirically across variety of settings.

Remark 3.6. There have been significant recent advances in
robust mean estimation [Diakonikolas et al., 2020, Lugosi
and Mendelson, 2021, Depersin and Lecué, 2022, Cher-
apanamjeri et al., 2020, Diakonikolas et al., 2022], that
are known to provide near optimal error bounds. However,
unlike our method, none of these algorithms can give confi-
dence bounds for all confidence values simultaneously.

Remark 3.7. Theorem 4.3 in [Devroye et al., 2016] proves
that it is impossible to get a finite sample confidence bound
to hold for all δ ∈ (0, 1). Our result does not contradict
this since the restriction on the allowable δ is implicit in
Theorem 3.1. Equation (5) gives that, for every t ∈ N, as
δ ↘ 0, B(t, δ) ↗ ∞. However, from Assumption 2.2, if
B(t, δ) ≥ G, then the statement of Theorem 3.1 is vacuous.
Thus, Theorem 3.1 gives a non-vacuous bounds only for
δ ∈ (δ

(t)
min, 1) where δ(t)min := infδ>0{B(t, δ) < G}.

3.1 UNIFORM OVER TIME BOUND

As a corollary of Theorem 3.1, we get the following bound
that holds uniformly over all time.

Corollary 3.8. There exists an universal constant A > 0
such that, when clipped SGD in Equation (3) is run with
parameters in Theorem 3.1,

P

∃t ∈ N : ∥θ̂t − θ∗∥ ≥ Amax

 σ3

√
t
,
σ
√
ln
(
t3

δ

)
√
t

 ≤ δ,
holds for every δ ∈ (0, 1).

The proof follows by taking an union bound over all t ≥ 1,
i.e., summing over t ≥ 1 on both the LHS and RHS of Corol-
lary 3.8 and noticing that

∑
t≥1

1
t(t+1) = 1. The bounds in

Theorem 3.1 and Corollary 3.8 are dimension free, i.e., the
term d does not appear in the bounds. The moment bound
σ plays the role of dimension. In particular, suppose that
all distributions in the family P have covariance matrices
bounded in the positive semi-definite sense by Σ ∈ Rd×d.
In this case, by definition, σ2 ≤ Trace(Σ) and plays the role
of dimension.

In the special case when the samples (Xt)t≥1 are i.i.d. with
sub-gaussian distributions with mean θ∗ and covariance ma-
trix Σ, [Abbasi-yadkori et al., 2011, Maillard, 2019, Chowd-
hury et al., 2022] show that for all δ ∈ (0, 1),

P
[
∃t ∈ N :

∥∥∥∥1t
t∑

s=1

Xs − θ∗
∥∥∥∥ ≥√

2λmax(Σ)

(
1 +

1

t

)
ln

(
(t+ 1)d

δ

)]
≤ δ, (6)

holds, where λmax(Σ) is the highest eigen-value of the co-
variance matrix Σ. Thus, for the special case of sub-gaussian



distributions, Equation (6) has a better dependence on time
t compared to our Corollary 3.8. The improved dependence
on time arises as Equation (6) is based on the construction
of a self normalized martingale and using the martingale
stopping theorem to obtain uniform over time bounds while
Corollary 3.8 is based on a simple union bound.

However, Equation (6) is not dimension free and depends on
the scale of the problem through the term dλmax(Σ) which
by definition is larger than Trace(Σ). In many high dimen-
sional settings, dλmax(Σ) is much larger than Trace(Σ) and
thus algorithms and bounds depending explicitly on d is un-
desirable [Wainwright, 2019, Lugosi and Mendelson, 2019].
For the uni-variate heavy-tailed distributions, a sequence
of works [Wang and Ramdas, 2022, 2023] establish confi-
dence bounds with sharp dependence on time by extending
the martingale recipe developed in [Howard et al., 2021].
In our draft, we are able to get dimension free bounds for
heavy-tailed distributions, but at the cost of a compactness
Assumption 2.2 that are not needed in [Abbasi-yadkori et al.,
2011]. It is an open question if we can get dimension-free
bounds with the improved time-dependence of the kind in
Equation (6) without the compactness assumption.

4 CHANGE-POINT DETECTION
ALGORITHM

Our algorithm is described in Algorithm 1 and is based on
the following idea. A change point is detected in the time-
interval [r, t] if there exists r < s < t such that confidence
interval around the estimated mean of the observations Xr:s

is separated from the confidence interval around the esti-
mated mean of the observations Xs+1:t. Further, in order to
accommodate multiple change-points, the algorithm restarts
after every change detection, similar to [Alami et al., 2020].
It is known that standard empirical mean is a poor estimator
when the underlying distributions can potentially be heavy-
tailed, as its confidence interval under only assumptions in
2.3 is wide [Lugosi and Mendelson, 2019]. To attain better
confidence intervals, we use the clipped-SGD Algorithm
1 that gives a confidence interval for the estimated mean
for every failure probability δ ∈ (0, 1) simultaneously. Hav-
ing multiple confidence intervals is crucial as we show that
adaptively testing different intervals of times at different
carefully chosen confidence intervals (Line 8 of Algorithm
1) leads to the bounded FPR guarantee.

4.1 CONNECTIONS TO GLR

Restating our algorithm, a change point is detected in a
time-interval [t0, t] if

∃s ∈ (t0, t) s.t. ∥θ̂t0:s − θ̂s+1:t∥2 ≥ C(t0, s, t, δ),

where the function C(·) is given in Line 8 of Algorithm
1. In the above re-statement, the estimates θ̂t0:s and θ̂s+1:t

are robust estimates of the mean based on the set of obser-
vations {Xt0, · · · , Xs} and {Xs+1, · · · , Xt} respectively.
The Improved-GLR of [Maillard, 2019] uses a detector
that is structurally similar to the above equation except
that they (i) use the empirical mean as they are dealing
with sub-gaussian random variables, and (ii) use a function
C(·) derived from the Laplace method that gives confidence
bounds with better dependence on time, but is not dimen-
sion free. In contrast, we use the robust mean estimator
given by clipped-SGD and the function C(·) is derived from
the confidence guarantees that only require the existence
of the second moment and make no other tail assumptions
and yields dimension free bounds. The cost however is
that the confidence bound derived from clipped SGD has a
weaker dependence on time compared to that obtained by
the Laplace’s method [Maillard, 2019].

4.2 FALSE-POSITIVE GUARANTEE

We will prove the following result on Algorithm 1. For a
given process M, and every r ∈ N, denote by the determin-
istic time τ (r)c := inf{τc : τc > r} be the first change-point
after time r.

Theorem 4.1 (False Positives). When Algorithm 1 is
run with parameters λ = 2G, ηt = 2

(t+γ) for γ =

max
(
120λσ(σ + 1), 320σ2 + 1

)
and δ ∈ (0, 1),

sup
M,r

P[∃t ∈ [r, τ (r)c ), s.t. At = 1|Ar = 1] ≤ δ,

holds almost-surely.

Proof is in Appendix in Section C.1. This result states that
with probability at-most δ, a true change-point does not
lie between any two consecutive detections made by the
algorithm. This theorem implies the following lemma.

Lemma 4.2. Under the conditions of Theorem 4.1, the FPR
condition in Equation (1) holds.

The proof is in the Appendix in Section C.2. We emphasize
that the guarantee in 4.2 is a worst-case guarantee. In other
words, no matter the underlying distribution, as long as
Assumptions 2.2 and 2.3 are met, Algorithm 1 will not have
more than a δ fraction of false-positives.

4.3 WORST-CASE DETECTION DELAY
GUARANTEE

Lemma 4.3. If Algorithm 1 is run with the parameters from
Theorem 4.1, then for every n ∈ N, ∆ > 0 and δ′ ∈ (0, 1)

D(n,∆, δ′) ≤ inf

{
d ∈ N : ∆2 ≥ B

(
n− 1,

δ′

2

)
+



Algorithm 1 Online Clipped-SGD Change Point Detection

1: Input: (ηt)t≥1, λ > 0, θ0 ∈ Θ, δ ∈ (0, 1) the FPR guarantee
2: r ← 1
3: θ̂t,t−1 ← θ0, for all t ≥ 1.
4: Set Num-change-points ← 0
5: for each time t = 1, 2, · · · , do
6: Receive sample Xt

7: θ̂s,t ←
∏

θ(θ̂s,t−1 − ηt−sclip(Xt − θ̂s,t−1, λ)), for every r ≤ s ≤ t.
8: if ∃s ∈ (r, t) such that ∥θ̂r:s − θ̂s+1:t∥22 > B

(
s− r, δ

2(t−r)(t−r+1)

)
+ B

(
t− s− 1, δ

2(t−r)(t−r+1)

)
{B(·, ·) is

defined in Equation (5} then
9: Set At← 1 {Change point detected}

10: r ← t+ 1
11: Set Num-change-points ←Num-change-points +1 {Increment number of change-points detected}
12: else
13: Set At← 0
14: end if
15: end for

(a) (b)

Figure 1: Figure (a) plots the heat-map of D(n,∆, δ′) from
Lemma 4.3 for fixed δ′ = 0.1. The white cells represent
infinity. Figure (b) plots the 90th quantile (δ′ = 0.1) of the
observed delay for Pareto distribution d = 32 over 30 runs.
As can be seen, the observed detection delay in (b) is much
smaller than the worst case delay in (a).

B
(
d,
δ′

2

)
+ B

(
n− 1,

δ

2(n+ d+ 1)(n+ d)

)
+

B
(
d,

δ

2(n+ d+ 1)(n+ d)

)}
, (7)

where D(·) and B(·) are in Eqns (2) and (5) respectively.

Proof is in the Appendix in Section D. Lemma 4.3 is an
upper bound on the worst case delay. In other words, for any
pre- and post-change distribution with norm of the means
differing by ∆, Algorithm 1 will detect this change within
delay of D(n,∆, δ′) with probability at-least 1− δ′.

For many specific choices of pre- and post-change distri-
bution families however, we expect the observed detection
delay to be much smaller than predicted by Lemma 4.3.
This bound is conservative as it is worst-case over all dis-
tributions. In Figure 1a we plot the bound in Lemma 4.3

for a fixed δ′ = δ = 0.1 as n and ∆ varies. We use the
constants given in Section 5.1 to plot Figure 1a. In Figure
1b, we plot the empirically observed detection delay for a se-
quence of 32 dimensional Pareto distributed random vectors
with shape parameter 2.01. As can be seen in Figure 1, the
observed detection delay is much smaller than that indicated
by Lemma 4.3, which is a worst case over all distributions.

Remark 4.4. In the special case when the observations
are Bernoulli random variables, the R-BOCPD algorithm
of [Alami et al., 2020] gives a smaller detection delay
compared to ours – our detection delay bound in 4.3 has
additional poly-logarithmic factors of log(n/δ) and sub-
optimal constants compared to R-BOCPD. However, our
bound holds for any family of distributions, including high-
dimensional and heavy tailed ones, while R-BOCPD can
only be applied for Bernoulli distributions.

Corollary 4.5 (Un-detectable Change). If ∆ ≤

O
(

log(n
δ )√
n

)
, then D(n,∆, δ′) ≤ ∞ for all δ′ ∈ (0, 1),

the delay bound in Lemma 4.3 is vacuous.

Remark 4.6. The undetecable region consists of the
grey/white areas of Figure 1a. However, since Lemma 4.3
is only an upper-bound, the fact that D(n,∆, δ′) =∞ does
not imply that our algorithm cannot detect the change (cf.
Figure 1b).

Remark 4.7. In the case of sub-gaussian, exponential fami-
lies, [Maillard, 2019] give a lower bound for changes that
not detectable by any algorithm. When Algorithm 1 is ap-
plied to sub-gaussian random variables from an exponential
family, the detection-delay bound in Lemma 4.3 is sub-
optimal by poly-logarithmic factors in log(n/δ) compared
to the lower bound. However, Algorithm 1 and the delay
bound in Lemma 4.3 holds for any class of distributions
subject to Assumptions 2.3 and 2.2, while the bounds in



[Maillard, 2019] only applies to sub-gaussian observations
from a known exponential family.

Remark 4.8. In parallel work, the FCS detector of [Shekhar
and Ramdas, 2023], when combined with the heavy-tailed
Catoni-style confidence sequences of [Wang and Ramdas,
2023] is shown to detect univariate mean changes as long as
∆ ⪯

√
log(log(n)/α)/n. Whether this rate is achievable

in multivariate settings is left for future work

4.4 CHANGE-POINT LOCALIZATION

In practice, it is also crucial to identify the location where
the change point occurred. In this section we describe how
to modify Algorithm 1 to also output the estimate of the
location of change in addition to just detecting the existence
of a change. Recall that for every r ∈ N, τ (A)

r ∈ N ∪ {∞}
is the stopping time denoting the rth time, Algorithm A
detects a change point. We modify Algorithm 1 by ad-
ditionally outputting for every r ∈ N, a time interval
[s

(A)
r;1 , s

(A)
2;r ] ⊆ [τ

(A)
r−1, τ

(A)
r ] such that this is an interval that

contains a change-point τc.

In order do so, we need an additional definition. For every
r < s < t and δ ∈ (0, 1), denote by B(r, s, t, δ) ∈ {0, 1}
as the indicator variable that

B(r, s, t, δ) = 1

(
∥θ̂r:s − θ̂s+1:t∥22 > B1 +B2

)
, (8)

where B1 = B
(
s− r, δ

2(t−r)(t−r+1)

)
and B2 =

B
(
t− s− 1, δ

2(t−r)(t−r+1)

)
. The estimates of the location

of change in a time-interval [r, t] is all those time instants
s ∈ [r, t] such that B(r, s, t, δ) = 1. Line 12 in Algorithm
2 in Section A in the Appendix, precisely defines the esti-
mator. The empirical performance of this method is shown
in Figure 3. We observe that this produces an accurate and
sharp estimate of the change-point location in simulations.

5 EXPERIMENTS

In this section we give numerical evidence to show that
Algorithm 1 can be applied across variety of settings. Line
8 of Algorithm 1 relies on confidence bounds for high-
dimensional estimation where the global constants are not
optimized. This is an artifact of the proof analysis in robust
estimation [Lugosi and Mendelson, 2019, Vershynin, 2018].
Thus, we modify the absolute constants used in Theorem 4.1
as follows. We use γ = max

(
4λσ(σ + 1), 8σ2 + 1

)
with

the color red highlighting the changes from the definition
in Theorem 4.1. The constant Ct is modified as follows

Ct = max( 0.5σ
4

G2λ2 ,
1λ

√
ln
(

2t2(t+1)
δ

)
γ2G ). In addition, we use the

following definition of B(·, ·)

B(t, δ) := Ct

[
γ2G2

t+ 1
+

(
2σ2

λ
+ 1σ2

)
1

2(t+ 1)

+
2λ2 ln

(
2t2(t+1)

δ

)
σ(σ + 1)

(t+ γ)
√
t+ 1

]
, (9)

whereCt and γ are the modified values stated above. Further,
in all simulations we assume Θ = Rd to be the whole plane.

5.1 SYNTHETIC SIMULATIONS

Here, demonstrate that Algorithm 1 with choice of hyper-
parameters in Equation (9) is practical and can be applied
across a variety of data generating distributions – either
heavy-tailed, or high-dimensional or both and still obtains
bounded false-positive rates and a much lower detection
delay compared to what the conservative bound in Lemma
4.3 would indicate.

5.1.1 Setup

In Figure 2, we construct synthetic situations and introduce
change-points with each change lasting 400 time-units. In
all experiments, we choose the family of distributions M
such that σ = 1, G = 12. At each time t, a sample is drawn
from the appropriate distribution that we detail below and
presented to the change-point algorithm. The true-change
points and the median detection times along with the 95
percentile upper and lower confidence bands are show in
Figure 2. These are estimated by averaging 30 independent
runs for each setting in Figure 2.

Heavy-tailed distribution: In Figures 2a, 2b and 2i, the
sample at every time-point is drawn from a Pareto distribu-
tion with shape-parameter 2.01. This implies that the third
central moment of the distribution is infinity. The mean of
the samples in the time-durations t ∈ [0, 400)∪ [800, 1200)
is 0 in all figures and the mean at times t ∈ [400, 800) ∪
[1200, 1600) is ∆ = 0.5, 1, 1 respectively in Figures 2a, 2b
and 2i. In Figure 2c, 2d and 2j, we consider the observa-
tion at time t to be 32 dimensional isotropic random vector
with norm having Pareto distributions with shape parame-
ter 2.01. The mean vector at times [0, 400) ∪ [800, 1200)
is 0 ∈ R32 and at times t ∈ [400, 800) ∪ [1200, 1600) is
∆√
32
[1, · · · , 1] ∈ R32, where ∆ = 0.5, 1, 1 respectively in

Figures 2c, 2d and 2j respectively.

Gaussian distribution: In Figures 2e and 2f the sample at
every time-point is drawn from a unit variance Gaussian
distribution. The mean of the samples in the time-durations
t ∈ [0, 400) ∪ [800, 1200) in all three figures is 0 and the
mean at times t ∈ [400, 800) ∪ [1200, 1600) in the two
figures 2e and 2f are ∆ = 0.5 and ∆ = 1 respectively. In
Figures 2g and 2h we consider the observation at time t to
be 32 dimensional isotropic gaussian random vector with
co-variance on each axis being 1/

√
32. The mean vector



(a) Pareto ∆ = 0.5 (b) Pareto ∆ = 1 (c) Pareto d = 32,∆ = 0.5 (d) Pareto d = 32,∆ = 1

(e) Normal ∆ = 0.5 (f) Normal ∆ = 1 (g) Normal d = 32, ∆ = 0.5 (h) Normal d = 32,∆ = 1

(i) Pareto ∆ = 1 (j) Pareto d = 32,∆ = 1 (k) Bernoulli with ∆ = 0.5 (l) Bernoulli with ∆ = 0.7

Figure 2: Empirical performance of Algorithm 1 in a variety of scenarios. Exact details of each plot in Section 5.1.

(a) Pareto ∆ = 1 (b) Pareto d = 32,∆ = 1 (c) Normal ∆ = 1 (d) Bernoulli ∆ = 0.7

Figure 3: Plots showing that by Algorithm 2 can detect and localize change-points across a variety of settings.

at times [0, 400) ∪ [800, 1200) is 0 ∈ R32 and at times
t ∈ [400, 1600) ∪ [1200, 1600) is ∆√

32
[1, · · · , 1] ∈ R32.

Bernoulli distribution: In Figures 2k and 2l, the data was
{0, 1} valued Bernoulli random variable with means at times
[0, 400) ∪ [800, 1200) was 0.7 and 0.85 respectively in the
two figures, and the means at times [400, 800)∪[1200, 1600)
are 0.3, 0.15 respectively in the two figures.

5.1.2 Baselines

We consider the Improved-GLR of [Maillard, 2019] and
R-BOCPD of [Alami et al., 2020] as baselines since they
have been empirically demonstrated to be state-of-art, and
are the only other algorithms to possess finite sample, non-
asymptotic FPR guarantees. The Improved-GLR can be
applied to any distribution, while its theoretical guarantees
only hold for sub-gaussian distributions. The R-BOCPD
algorithm is only applicable to binary data, and thus we only
use it on the Bernoulli distributed setting.

5.1.3 Results

Figure 2 shows that our algorithm is the only one to
attain bounded FPR across heavy-tailed, Gaussian, high

dimensional and Bernoulli distribution.

For Pareto distribution, Figures 2h and 2j show that
the Improved-GLR algorithm has a large number
of False Positives. Intuitively this occurs because the
Improved-GLR algorithm assumes sub-gaussian tails and
thus large deviations that are typical for the heavy-tailed
Pareto distributions are mistaken for a change. (See also
Figure 6). In contrast, from Figures 2a, 2b, 2c, 2d and 2j,
we see that our algorithm consistently attains bounded false-
positive rates and finite detection delay guarantees across
choices of ∆ and dimension d.

On gaussian distributed data, both our algorithm 1 and
the Improved-GLR obtains similar performance in-terms
of false-positive rates. However, the the median detection
time of our algorithm is larger than the 95th percentile de-
tection time of Improved-GLR. In Bernoulli distributed
data, all methods attain similar False-positive guarantees;
however, the specialized algorithm of R-BOCPD is supe-
rior in terms of detection delay compared to ours and the
Improved-GLR.

In Table 1, we summarize Figure 2 by measuring regret. For
any OCPD algorithm A, we can define a function R(A) :
[T ] → N where R(A)(t) =

∑
s≤tAs is the total number



Distribution d ∆ Algorithm 1 Improved GLR [Maillard, 2019] R-BOCPD [Alami et al., 2020]

Normal

1 1 274± 38 64± 45

N/A
32 1 300± 6 2400± 0
1 0.5 694± 191 356± 150
32 0.5 1427± 14 2400± 1

Pareto

1 1 296± 35 19913± 8143

N/A
32 1 302± 7 1616± 921
1 0.5 868± 365 1891± 663
32 0.5 1431± 14 1667± 653

Bernoulli
- 0.7 515± 49 181± 23 23± 479
- 0.5 1509± 53 1466± 762 63± 380

Table 1: Quantitative summary of Figure 2 by comparing regret, where lower is better. Our method achieves lower regret
across variety of settings of distribution, dimension and change magnitude.

Figure 4: Performance of change-point detection of Algo-
rithm 1 and the Improved-GLR on real data.

of change-points detected upto time t. Similarly, for any
t ∈ [T ], the ground-truth function R∗(t) = max{c : τc ≤
t} is the number of true changes till time t. The regret
of algorithm A is defined as

∑T
t=1 |RA(t) − R∗(t)|. This

measure is non-negative and is 0 if and only if the output
of the algorithm matches the ground truth. In Table 1, we
give the median value of regret along with 95% confidence
interval. We observe in Table 1 that our method achieves
lower regret across a variety of situations - whether the data
is heavy-tailed, light tailed high dimensional or discrete.

5.1.4 Change-point localization

In Figure 3, we demonstrate sharpness of change-point lo-
calization (detailed in Algorithm 2). The setting in Figure
3 is identical to that of Figure 2 with the boundary of the
shaded region representing the 5th quantile for the start-
ing point and the 95th quantile for the ending point of the
change location interval output in Line 12 of Algorithm 2.
The localization region is biased towards the right, which is
expected since our algorithm is designed to minimize false
positives even in the worst-case.

5.2 REAL-DATA

In Figure 4 we show the performance of Algorithm 1 and
the Improved-GLR on the well-log dataset [Ó Ruanaidh
and Fitzgerald, 1996]. This dataset consists of 4050 mea-
surements in the range [6× 104, 105] of nuclear-magnetic-
response taken during drilling of a well. The data are used to
interpret the geophysical structure of the rock surrounding
the well. The variations in mean reflect the stratification of
the earth’s crust. We process the data by dividing it by 104.5

and run Algorithm 1 with G = 10, σ = 1 and Improved
GLR with σ = 1. The detected change-points are shown in
Figure 4. Figure 4 shows that Algorithm 1 is comparable to
Improved-GLR in terms of false-positives.

6 CONCLUSIONS

We introduced a new method based on clipped-SGD, to
detect change-points with guaranteed finite-sample FPR,
without parametric or tail assumptions. The key technical
contribution is to give an anytime online mean estimation
algorithm, that provides a confidence bound for the mean at
all confidence levels simultaneously. We also give a finite-
sample, high probability bound on the detection delay as
a function of the gap between the means and number of
pre-change observations. We further corroborate empiri-
cally that ours is the only algorithm to detect change-points
with bounded FPR, across multi-dimensional heavy tailed,
gaussian or binary-valued data streams.

Our work opens several interesting directions for future
work. Obtaining sharp confidence intervals for estimating
the mean of a random vector without the existence of vari-
ance was shown in [Cherapanamjeri et al., 2022, Wang and
Ramdas, 2022]. Extending the tools from therein to further
relax the second moment assumption we considered is a
natural direction of future work. Another open question is
to see if the martingale methods can be extended to the
high-dimensional to get dimension free confidence bounds.
Further, we observe in simulations that our method attains
‘sharp’ localization empirically. Understanding the three-



way trade-off between sharpness of localization, FPR and
detection delay is an important area of future work.

Acknowledgements AS thanks Aaditya Ramdas for several
useful comments that improved the presentation.
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A CHANGE-POINT LOCALIZATION

Algorithm 2 Online Clipped-SGD Change Point Detection and Localization

1: Input: (ηt)t≥1, λ > 0, θ0 ∈ Θ, δ ∈ (0, 1) FPR guarantee
2: r ← 1
3: θ̂t,t−1 ← θ0, for all t ≥ 1.
4: Set τ (0)c ← 0
5: Set Num-change-points ← 0
6: for each time t = 1, 2, · · · , do
7: Receive sample Xt

8: θ̂s,t ←
∏

θ(θ̂s,t−1 − ηt−sclip(Xt − θ̂s,t−1, λ)), for every r ≤ s ≤ t.
9: if ∃s ∈ (r, t) such that ∥θ̂r:s − θ̂s+1:t∥22 > B

(
s− r, δ

2(t−r)(t−r+1)

)
+ B

(
t− s− 1, δ

2(t−r)(t−r+1)

)
{B(·, ·) is

defined in Equation (5} then
10: Set Restartt← 1 {Change point detected}
11: Set Num-change-points ←Num-change-points +1 {Increment number of change-points detected}
12: Output time interval [inf{s ∈ (r, t) s.t. B(r, s, t, δ) = 1}, sup{s ∈ (r, t) s.t. B(r, s, t, δ) = 1}] as the location of

the change-point {B() defined in Equation (8)}
13: r ← t+ 1
14: else
15: Set Restartt← 0
16: end if
17: end for

B PROOF FOR ROBUST ESTIMATION IN THEOREM 3.1

We follow the same proof architecture as that of Proof of [Tsai et al., 2022]. Throughout the proof, we let m = 1 to be the
strong convexity parameter of the quadratic loss function x→ 1

2∥x− x0∥
2, for some x0 ∈ Rd.

Fix a time t ∈ N. We define a sequence of random variable (ψt)t≥1 as follows.

ψt := clip((Xt − θ̂t−1), λ)− (θ∗ − θ̂t−1),

Consider any time t. We have

∥θt − θ∗∥22 = ∥
∏
Θ

(θ̂t−1 − ηtclip(Xt − θ̂t−1, λ))− θ∗∥22, (10)

(a)

≤ ∥θ̂t−1 − ηtclip(Xt − θ̂t−1, λ)− θ∗∥22, (11)

= ∥θ̂t−1 − ηt(ψt + (θ∗ − θ̂t−1))− θ∗∥22,

= ∥θ̂t−1 − θ∗∥22 + η2t ∥ψt + (θ∗ − θ̂t−1)∥22 − 2ηt⟨θ̂t−1 − θ∗, ψt + (θ∗ − θ̂t−1)⟩,
(b)

≤ ∥θ̂t−1 − θ∗∥22 + 2η2t ∥ψt∥22 + 2η2t ∥(θ∗ − θ̂t−1)∥22 − 2ηt⟨θ̂t−1 − θ∗, ψt + (θ∗ − θ̂t−1)⟩, (12)

Step (a) follows since Θ is a convex set, ∥PΘ(θ̂t) − θ∗∥ ≤ ∥θ̂t − θ∗∥, since θ∗ ∈ Θ. In step (b), we use the fact that
∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22, for all a, b ∈ Rd. Substituting Equation (44) into (12), we get that

∥θ∗ − θt∥22 ≤ ∥θ̂t−1 − θ∗∥22 + 2η2t ∥ψt∥22 − 2ηt⟨θ̂t−1 − θ∗t , ψt⟩

+ 2η2t

(
(M +m)⟨(θ∗ − θ̂t−1), θ̂t−1 − θ∗t ⟩ −mM∥θ̂t−1 − θ∗∥22

)
− 2ηt⟨(θ∗ − θ̂t−1), θ̂t−1 − θ∗t ⟩.

Re-arranging the equation above yields

∥θ∗ − θt∥22 ≤ (1− 2η2tmM)∥θ̂t−1 − θ∗∥22 + 2η2t ∥ψt∥22 − 2ηt⟨θ̂t−1 − θ∗, ψt⟩



− 2ηt(1− ηt ((M +m)) ⟨(θ∗ − θ̂t−1), θ̂t−1 − θ∗⟩.

Further substituting Equation (43) into the display above yields that

∥θ∗ − θ̂t∥22 ≤ (1− 2ηtm+ 2η2tm
2)∥θ̂t−1 − θ∗∥22 + 2η2t ∥ψt∥22 − 2ηt⟨θ̂t−1 − θ∗, ψt⟩,

≤ (1− ηtm)∥θ̂t−1 − θ∗∥22 + 2η2t ∥ψt∥22 − 2ηt⟨θ̂t−1 − θ∗, ψt⟩,

where the inequality comes from the fact that if ηtm < 1 =⇒ 2ηtm− 2η2tm
2 > ηm.

∥θ∗ − θ̂t∥22 ≤ (1− ηtm)∥θ̂t−1 − θ∗∥22 + 2η2t ∥ψt∥22 − 2ηt⟨θ̂t−1 − θ∗, ψt⟩. (13)

Unrolling the recursion yields,

∥θ∗ − θ̂t∥22 ≤
t∏

u=1

(1− ηum)∥θ1 − θ∗∥22 + 2η2t

t−1∑
s=1

s∏
u=1

(1− ηt−u+1m)∥ψt−s+1∥22

−2ηt
t−1∑
s=1

s∏
u=1

(1− ηt−u+1m)⟨θt−s − θ∗, ψt−s+1⟩.

Using the fact that
∏s

u=1(1− ηt−u+1m) = (t−s+γ−3)(t−s+γ−2)
(t+γ)(t+γ−1) , we get that

∥θ∗ − θ̂t∥22 ≤
(γ − 2)(γ − 1)∥θ1 − θ∗∥22

(t+ γ)(t+ γ − 1)
(14)

−2ηt
t−1∑
s=1

(t− s+ γ − 3)(t− s+ γ − 2)⟨θt−s − θ∗, ψt−s+1⟩
(t+ γ)(t+ γ − 1)

. (15)

Denote by ψt := ψ
(b)
t + ψ

(v)
t , where ψ(b)

t := EZt [ψt|Ft−1] and ψ(v)
t := ψt − ψ(b)

t . Using this in the display above and
using that fact that ∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22, we get

∥θ∗t − θ∥22 ≤
(γ − 1)(γ − 2)∥θ1 − θ∗∥22

(t+ γ)(t+ γ − 1)
+ 4η2t

t−1∑
s=1

(t− s+ γ − 3)(t− s+ γ − 2)∥ψt−s+1∥22
(t+ γ)(t+ γ − 1)

+

− 2ηt

t−1∑
s=1

(t− s+ γ − 3)(t− s+ γ − 2)⟨θt−s − θ∗, ψ(b)
t−s+1⟩

(t+ γ)(t+ γ − 1)

− 2ηt

t−1∑
s=1

(t− s+ γ − 3)(t− s+ γ − 2)⟨θt−s − θ∗, ψ(v)
t−s+1⟩

(t+ γ)(t+ γ − 1)
.

Further simplifying by adding and subtracting EZt
[∥ψ(v)

t ∥22|Ft−1] to be above display, we get

∥θ∗ − θ̂t∥22 ≤
(γ − 1)(γ − 2)∥θ1 − θ∗∥22

(t+ γ)(t+ γ − 1)
+ 4η2t

t−1∑
s=1

(t− s+ γ − 3)(t− s+ γ − 2)∥ψ(b)
t−s+1∥22

(t+ γ)(t+ γ − 1)
(16)

+ 4η2t

t−1∑
s=1

(t− s+ γ − 3)(t− s+ γ − 2)EZt−s+1
[∥ψ(v)

t−s+1∥22|Ft−s]

(t+ γ)(t+ γ − 1)

+ 4η2t

t−1∑
s=1

(t− s+ γ − 3)(t− s+ γ − 2)(∥ψ(v)
t−s+1∥22 − EZt−s+1

[∥ψ(v)
t−s+1∥22|Ft−s])

(t+ γ)(t+ γ − 1)
(17)

− 2ηt

t−1∑
s=1

(t− s+ γ − 3)(t− s+ γ − 2)⟨θt−s − θ∗, ψ(b)
t−s+1⟩

(t+ γ)(t+ γ − 1)

− 2η

t−1∑
s=1

(t− s+ γ − 3)(t− s+ γ − 2)⟨θt−s − θ∗, ψ(v)
t−s+1⟩

(t+ γ)(t+ γ − 1)
. (18)



Lemma B.1 (Lemma F.5 [Gorbunov et al., 2020]). If λ ≥ 2G, the following inequalities hold almost-surely for all times t.

∥ψ(v)
t ∥ ≤ 2λ1σ>0 (19)

∥ψ(b)
t ∥2 ≤

4σ2

λ
(20)

EZt [∥ψ
(v)
t ∥22|Ft−1] ≤ 10σ2 (21)

Simplifying Equation (18) using bounds in Lemma B.1, along with the fact that for all 1 ≤ s ≤ t and γ ≥ 1,
(t−s+γ−3)(t−s+γ−2)

(t+γ)(t+γ−1) ≤ t−s+γ
t+γ we get

∥θ∗ − θ̂t∥22 ≤
(γ − 1)(γ − 2)∥θ1 − θ∗∥22

(t+ γ)(t+ γ − 1)
+

16η2t σ
2

λ

t−1∑
s=1

t− s+ γ

t+ γ
+ 4η2t σ

2
t−1∑
s=1

t− s+ γ

t+ γ

+ 4η2t

t−1∑
s=1

(t− s+ γ)(∥ψ(v)
t−s+1∥22 − EZt−s+1 [∥ψ

(v)
t−s+1∥22|Ft−s+1])

t+ γ

+ 2ηt

t−1∑
s=1

(t− s+ γ)∥θt−s − θ∗∥∥ψ(b)
t−s+1∥

t+ γ
+−2ηt

t−1∑
s=1

(t− s+ γ)⟨θt−s − θ∗, ψ(v)
t−s+1⟩

t+ γ
. (22)

Further applying the bound that ∥ψ(b)
t ∥ ≤ 4σ2

λ

∥θ∗ − θ̂t∥22 ≤
(γ − 1)(γ − 2)∥θ1 − θ∗∥22

(t+ γ)(t+ γ − 1)
+

(
16η2t σ

2

λ
+ 4η2t σ

2

) t−1∑
s=1

t− s+ 1

t+ γ︸ ︷︷ ︸
Term 1

+ 4η2t

t−1∑
s=1

(t− s+ γ)(∥ψ(v)
t−s+1∥22 − EZt−s+1 [∥ψ

(v)
t−s+1∥22|Ft−s+1])

t+ γ︸ ︷︷ ︸
Term 2

+
8σ2ηt
λ

t−1∑
s=1

(t− s+ γ)∥θt−s − θ∗∥
t+ γ︸ ︷︷ ︸

Term 3

−2ηt
t−1∑
s=1

(t− s+ γ)⟨θt−s − θ∗, ψ(v)
t−s+1⟩

t+ γ︸ ︷︷ ︸
Term 4

. (23)

B.1 PROBABILISTIC ANALYSIS

Definitions

For every t ≥ 1, denote by the constant

Ct = max

 1024σ4

G2m2λ2
,
8λ
√
ln
(
2t3

δ

)
γ2G

 . (24)

Denote by the deterministic constant ξ(t)u for u = 1, · · · , t as

(
ξ(t)u

)2
:= Ct

[(
16σ2

λ
+ 4σ2

)
1

2m2(u+ 1)
+

96λ2 ln
(

2t3

δ

)
σ(σ + 1)

m(u+ γ)
√
u+ 1

]
. (25)

From the definition, the following in-equalities hold.



Proposition B.2. For all times u ∈ {1, · · · , t},
u−1∑
s=1

(u− s+ γ)ξ(t)s ≤ 2(u+ γ)
√
u+ 1ξ(t)u , (26)

u−1∑
s=1

(ξ(t)s )2 ≤ 2(u+ 1) ln(u+ 1)(ξ(t)u )2 (27)

Proof. This follows from the following fact.

Proposition B.3. For all u ∈ N and γ ≥ 0, we have

u−1∑
s=1

u− s+ γ√
u+ 1

≤ 2(u+ γ)
√
u+ 1.

For each time u ∈ {1, · · · , t}, denote by the random variable ν(t)u by

ν(t)u :=

{
θu − θ∗ if ∥θu − θ∗∥2 ≤ (ξ

(t)
u )2 + Ctγ

2G2

(u+1)

0 if otherwise

For every u ∈ {1, · · · , t}, denote by the event E(t)u;1 to be the one in which the following inequality holds for all u ∈
{1, · · · , t}.

E(t)u;1 :=

{
4η2t

u−1∑
s=1

(u− s+ γ)(∥ψ(v)
u−s+1∥22 − EZu−s+1 [∥ψ

(v)
u−s+1∥22|Fu−s+1])

t+ γ

≤
96λ2 ln

(
2t2(t+1)

δ

)
σ(σ + 1)

m(u+ γ)
√
u+ 1

}
. (28)

and E(t)u;2 as

E(t)u;2 :=

{
− 2ηu

u−1∑
s=1

(u− s+ γ)⟨υu−s, ψ
(v)
u−s+1⟩

t+ γ
≤
ξ
(t)
u ln

(
2t2(t+1)

δ

)
10
√
u+ 1

+
Cuγ

2G2

4(u+ 1)
.

}
(29)

Denote by the event E(t) as

E(t) :=
t⋂

u=1

(
E(t)u;1 ∩ E

(t)
u;2

)
. (30)

Lemma B.4. For all t ≥ 1,

P[E(t)] ≥ 1− δ

t(t+ 1)
.

We now prove by induction hypothesis that

Lemma B.5. For every t, under the event E(t), the following holds.

∥θ̂u − θ∗∥22 ≤
Ctγ

2G2

(u+ 1)2
+ (ξ(t)u )2, (31)

for all u ∈ {1, · · · , t}.



Proof. Proof of Lemma B.1. We will prove this lemma by induction on u by analyzing Equation (23). The base-case of
u = 1 holds trivially with probability 1 since Ct > 1, ∀t ≥ 1 and γ > 2.

Now, assume that on the event E(t), the induction hypothesis in Equation (31) holds for all times 1, · · · , u− 1. We prove
this by expanding Equation (23) and bounding each of the terms.

Term 1

It is easy to verify that (
16η2uσ

2

λ
+ 4η2uσ

2

) u−1∑
s=1

u− s+ γ

u+ γ
≤
(
16σ2

λ
+ 4σ2

)
u

2m2(u+ γ)2
,

≤

(
16σ2

λ + 4σ2
)

2m2(u+ 1)
.

The last inequality follows since γ2 > 1.

Term 2

First notice that

4η2u

u−1∑
s=1

(u− s+ γ)(∥ψ(v)
u−s+1∥22 − EZu−s+1 [∥ψ

(v)
u−s+1∥22|Fu−s+1])

t+ γ
≤

4ηu
u+ γ

u−1∑
s=1

(∥ψ(v)
u−s+1∥22 − EZu−s+1

[∥ψ(v)
u−s+1∥22|Fu−s+1])

From the definition of event E(t) in Equation (30), we get that

Term 2 ≤
96λ2 ln

(
2t2(t+1)

δ

)
σ(σ + 1)

m(u+ γ)
√
u+ 1

.

Term 3

8σ2ηu
λ

u−1∑
s=1

(u− s+ γ)∥θu−s − θ∗∥
u+ γ

≤ 8σ2

mλ(u+ γ)2

u−1∑
s=1

(
(u− s+ γ)ξ

(t)
u−s +

√
CtγG

(u− s+ γ)

(u− s+ 1)

)
,

(27)

≤
16σ2

√
(u+ 1)ξ

(t)
u

m(u+ γ)
+

8
√
Ctσ

2γ2Gu

mλ(u+ γ)2
,

≤
16σ2

√
(u+ 1)ξ

(t)
u

m(u+ γ)
+

8
√
Ctσ

2γ2G

mλ(u+ γ)
,

(a)

≤ ξ
(t)
u

10
√
u+ 1

+
Ctγ

2G2

4(u+ 1)
.

The last inequality follows since γ ≥ 320σ2

m + 1 =⇒ 8σ2(u+1)1/2 log(u+1)
m(u+γ) ≤ 1

10
√
u+1

, for all u ≤ t and the fact that

Ct ≥ 1024σ4

G2m2λ2 .

Term 4



The definition of event E(t) in Equation (30) gives that Term 4 ≤
ξ(t)u ln

(
2t2(t+1)

δ

)
10

√
u+1

+ Ctγ
2G2

4(u+1)

Now, adding in the bounds together into Equation (23),

∥θ̂u − θ∗∥22 ≤
γ2G2

u+ 1
+

(
16σ2

λ + 4σ2
)

2m2(u+ 1)
+

ξ
(t)
u

10
√
u+ 1

+
1600λ2 ln

(
2t2(t+1)

δ

)
σ(σ + 1)

m(u+ γ)
√
u+ 1

+
ξ
(t)
u ln

(
2t2(t+1)

δ

)
10
√
u+ 1

+
Ctγ

2G2

2(u+ 1)
.

Now using the fact that
ξ(t)u ln

(
2t3

δ

)
√
u+1

≤ (ξ
(t)
u )2, we get that

∥θ̂u − θ∗∥22 ≤
(
1 +

Ct

2

)
γ2G2

u+ 1
+

(
16σ2

λ + 4σ2
)

2m2(u+ 1)
+

(ξ
(t)
u )2

5
+

96λ2 ln
(

2t2(t+1)
δ

)
σ(σ + 1)

m(u+ γ)
√
u+ 1

.

Substituting the definition of ξ(t)u from Equation (25), we get that

∥θ̂u − θ∗∥22 ≤
(
1 +

Ct

2

)γ2G2

u+ 1
+

(
16σ2

λ + 4σ2
)

2m2(u+ 1)
+

96λ2 ln
(

2t2(t+1)
δ

)
σ(σ + 1)

m(u+ γ)
√
u+ 1

 ,
≤ (ξ(t)u )2 +

Ctγ
2G2

u+ 1
.

The last inequality follows since Ct = max

 1024σ4

G2m2λ2 ,
8λ

√
ln
(

2t3

δ

)
γ2G

 =⇒ Ct ≥ 2.

B.2 PROOF OF LEMMA B.4

We first reproduce an useful result.

Lemma B.6 (Freedman’s inequality[Victor, 1999]). Suppose Y1, · · · , YT is a bounded martingale with respect to a filtration
(Ft)

T
t=0 with E[Yt|Ft−1] = 0 and P[|Yt| ≤ B] = 1 for all t ∈ {1, · · · , T}. Denote by Vs :=

∑s
n=1 Var(Yn|Fn−1) be the

sum of conditional variances. Then, for every a, v > 0,

P

(
∃n ∈ [1, T ] such that

n∑
t=1

Yt ≥ a and Vn ≤ v

)
≤ exp

(
−a2

2(v +Ba)

)
. (32)

Re-arranging the above inequality, we see that if

a ≥ B ln

(
2T

δ

)
+

√(
B ln

(
2T

δ

))2

+ 2v ln

(
2T

δ

)
, (33)

then the RHS of Equation (32) is bounded above by δ
2 .

Proof of Lemma B.4. Proof of Equation (28)



Fix a u ∈ {1, · · · , t}. For s ∈ {1, · · · , u − 1}, denote by the random variable Y
(u)
s := (u−s+γ)

u+γ (∥ψ(v)
u−s+1∥22 −

EZu−s+1 [∥ψ
(v)
u−s+1∥22|Fu−s]). Thus,

4η2u

u−1∑
s=1

(u− s+ γ)(∥ψ(v)
u−s+1∥22 − EZu−s+1 [∥ψ

(v)
u−s+1∥22|Fu−s+1])

u+ γ
≤ 4η2u

u−1∑
s=1

Y (u)
s .

Observe that the sequence (Y
(u)
s )u−1

s=1 is a martingale difference sequence with respect to the filtration (Gs)t−1
s=1, where

Gs := Fu−s. Furthermore, observe that with probability 1, |Y (u)
s | ≤ 4λ21σ>0 + 4λ21σ>0 ≤ 8λ21σ>0. We can bound the

conditional variance as

u−1∑
s=1

Var(Y (u)
s |Gs) ≤

u−1∑
s=1

(
(u− s+ γ)

u+ γ

)2

EZu−s
[(∥ψ(v)

u−s+1∥22 − EZu−s+1
[∥ψ(v)

u−s+1∥22|Fu−s])
2|Fu−s],

19
≤ 8λ2

u−1∑
s=1

EZu−s [|∥ψ
(v)
u−s+1∥22 − EZu−s+1 [∥ψ

(v)
u−s+1∥22|Fu−s]||Fu−s],

≤ 8λ2
u−1∑
s=1

2EZu−s
[|∥ψ(v)

u−s+1∥22|Fu−s],

21
≤ 160λ2σ2(u− 1).

Now, putting B := 8λ2 and v = 160λ2σ2u, we get from Equation (33) that with probability at-least 1− δ/(2t2(t+ 1)),

u−1∑
s=1

Y (u)
s ≤ 8λ2 ln

(
2t2(t+ 1)

δ

)
1σ>0 +

√(
8λ2 ln

(
2t2(t+ 1)

δ

)
1σ>0

)2

+ 160λ2σ2u ln

(
2t2(t+ 1)

δ

)
,

(a)

≤ 32λ2 ln

(
2t2(t+ 1)

δ

)
σ(σ + 1)

√
u+ 1.

Step (a) follows from the fact that λ ≥ 1. Thus, we have with probability at-least 1− δ
2t2(t+1) ,

4η2u

u−1∑
s=1

(u− s+ γ)(∥ψ(v)
u−s+1∥22 − EZu−s+1

[∥ψ(v)
u−s+1∥22|Fu−s+1])

u+ γ
≤ 96η2uλ

2 ln

(
2t2(t+ 1)

δ

)
σ(σ + 1)

√
u+ 1,

≤
96λ2 ln

(
2t2(t+1)

δ

)
σ(σ + 1)

√
u+ 1

m2(u+ γ)2
,

≤
96λ2 ln

(
2t2(t+1)

δ

)
σ(σ + 1)

m2(u+ γ)
√
u+ 1

.

Now taking an union bound over all u ∈ {1, · · · , t} yields that with probability at-least 1 − δ
2t(t+1) , for all time u ∈

{1, · · · , t},

4η2u

u−1∑
s=1

(t− s+ γ)(∥ψ(v)
u−s+1∥22 − EZu−s+1

[∥ψ(v)
u−s+1∥22|Fu−s+1])

t+ γ
≤

96λ2 ln
(

2t2(t+1)
δ

)
σ(σ + 1)

m(u+ γ)
√
u+ 1

Proof of Equation (29)

−2ηu
u−1∑
s=1

(u− s+ γ)⟨υu−s, ψ
(v)
u−s+1⟩

u+ γ
≤ 2

m(u+ γ)2

u−1∑
s=1

⟨θu−s − θ∗, ψ(v)
u−s+1⟩



Fix a u ∈ {1, · · · , t} and denote by Y (u)
s := (u− s+ γ)⟨θu−s − θ∗, ψ(v)

u−s+1⟩. Since θu−s is measurable with respect to
the sigma-algebra generated by Fu−s, the conditional expectation E[Y (u)

s |Fu−s] = 0. Thus, (Y (u)
s )u−1

s=1 is a martingale
difference sequence with respect to the filtration (Fu−s)

u−1
s=1 . Furthermore, we have from Equation (19) that |Y (u)

s | ≤
2(u− s+ γ)

(
ξ
(t)
u−s +

γR1

(u+γ−1)

)
λ ≤ 2λ(u+ γ)ξ

(t)
t + 2λγG. We can now bound the sum of conditional variances as

u−1∑
s=1

Var(Y (u)
s |Fu−s) ≤

u−1∑
s=1

4(u− s+ γ)2(ξ
(t)
u−s)

2λ2σ2 + 4λ2G2,

(27)

≤ 12λ2σ2(u+ γ)2(u+ 1) log(u+ 1)(ξ(t)u )2 + 4λ2γ2G2u.

Step (a) follows since ηm < 1. Now applying the bound in Equation (33) with B := 2λ(u + γ)ξ
(t)
u + 2λG and

v = 12λ2σ2(u+ γ)2(u+ 1) log(u+ 1)(ξ
(t)
u )2 + 4λ2γ2G2u, we get that with probability at-least 1− δ/(2t2(t+ 1)),

u−1∑
s=1

(u− s+ γ)⟨υu−s, ψ
(v)
u−s+1⟩ ≤ 2λ

(
(u+ γ)ξ(t)u +R1

)
ln

(
2t2(t+ 1)

δ

)
+

[(
2λ
(
(u+ γ)ξ(t)u +G

)
ln

(
2t2(t+ 1)

δ

))2

+
(
λ2σ2(u+ γ)2(u+ 1) log(u+ 1)(ξ(t)u )2 + 4λ2γ2G2(u+ 1)

)
ln

(
2t2(t+ 1)

δ

)] 1
2

,

≤ 6(u+ γ)
√
u+ 1 log(u+ 1)(ξ(t)u )λσ(σ + 1) ln

(
2t2(t+ 1)

δ

)
+ 2λγG

√
(u+ 1) ln

(
2t2(t+ 1)

δ

)
.

Thus,

−2ηu
u−1∑
s=1

(u− s+ γ)⟨υu−s, ψ
(v)
u−s+1⟩

u+ γ
≤

12
√
u+ 1 log(u+ 1)(ξ

(t)
u )λσ(σ + 1) ln

(
2t2(t+1)

δ

)
(u+ γ)

+
CtγG

10(u+ 1)
,

≤
ξ
(t)
u ln

(
2t2(t+1)

δ

)
10
√
u+ 1

+
CtG

10(u+ 1)
.

The first inequality follows since Ct ≥
8λ

√
ln
(

2t3

δ

)
γ2G . The last inequality follows since for all times u ≤ t, we have

12
√
u+ 1 log(u+ 1)λσ(σ + 1) ln

(
2t2(t+1)

δ

)
(u+ γ)

≤
ln
(

2t2(t+1)
δ

)
10

as a consequence of γ ≥ 120λσ(σ + 1).

C PROOFS FROM SECTION 4.2

C.1 PROOF OF THEOREM 4.1

We bound this probability using the result of 3.1 and a simple union bound argument. For any process M, observe that

P[∃t ∈ [r + 1, τ (r)c ) s.t.At = 1|Ar = 1] = P[∪τc−1
t=r+1At = 1|Ar = 1]

≤
τc−1∑
t=r+1

P[At = 1|Ar = 1]. (34)



We now examine the above Equation to bound it. For any fixed t ∈ (r, τ
(r)
c )

P[At = 1|Ar = 1] = P

[
t−1⋃

s=r+1

∥θ̂r:s − θ̂s+1:t∥ ≥ B
(
s− r, δ

2t(t+ 1)

)
+ B

(
t− s− 1,

δ

2t(t+ 1)

)]
,

≤
t−1∑

s=r+1

(
P
[
∥θ̂r:s − θc−1∥ ≥ B

(
s− r, δ

2t(t+ 1)

)]
+ P

[
∥θ̂s+1:t − θc−1∥ ≥ B

(
t− s− 1,

δ

2t(t+ 1)

)])
,

(a)

≤
t−1∑

s=r+1

(
δ

2t(t+ 1)(s− r)(s− r + 1)
+

δ

2t(t+ 1)(t− s− 1)(t− s)

)
,

=
δ

2t(t+ 1)

(
t−1∑

s=r+1

1

(s− r)(s− r + 1)
+

t−1∑
s=r+1

1

(t− s− 1)(t− s)

)
,

≤ δ

2t(t+ 1)

(
t−1−r∑
s=1

1

s(s+ 1)
+

t−1−r∑
s=1

1

s(s+ 1)

)
,

(b)

≤ δ

t(t+ 1)
. (35)

Since for all t < τ
(r)
c , the mean of the random variables Xr+1, · · · , Xt are identical and equal to θc−1 (see notation in

Section 2), Theorem 3.1 gives rise to inequality (a). Step (b) follows from the fact that
∑

s≥1
1

s(s+1) = 1. Now substituting
the bound from Equation (35) into Equation (34), we get that

P[∃t ∈ [r + 1, τ (r)c ) s.t. At = 1|Ar = 1] ≤
τc−1∑
t=r+1

δ

t(t+ 1)
,

≤
∑
t≥1

δ

t(t+ 1)
,

= δ.

Since the above bound holds for all r and process M, we have

sup
M,r

P[∃t ∈ [r + 1, τ (r)c ) s.t.At = 1|Ar = 1] ≤ δ.

C.2 PROOF OF LEMMA 4.2

Recall from the definition that the rth detection is false if

χ(A)
r = 1(̸ ∃c s.t. τc ∈ (t

(A)
r−1, t

(A)
r ]).

We will show that E[χ(A)
r ] ≤ δ. This will then conclude the proof of the lemma.

E[χ(A)
r ] = P[ ̸ ∃c s.t. τc ∈ (t

(A)
r−1, t

(A)
r ]],

= E
[
P[̸ ∃c s.t. τ (s)c ∈ (s, t(A)

r ]]

∣∣∣∣t(A)
r−1 = s

]
,

≤ E
[
P[∪∞t=s+1τ

(s)
c = t, t(A)

r < t]

∣∣∣∣t(A)
r−1 = s

]
,

≤ E
[
P[∃t ∈ [s+ 1, τ (s)c ),At = 1]

∣∣∣∣t(A)
r−1 = s

]
,

(a)

≤ E
[
P[∃t ∈ [s+ 1, τ (s)c ),At = 1|As = 1]

∣∣∣∣t(A)
r−1 = s

]
,



(b)

≤ δ.

Inequality (a) follows from the fact that on the event t(A)
r−1 = s, As = 1. Inequality (b) follows from Theorem 4.1.

D PROOF OF LEMMA 4.3

The proof follows from a straightforward application of Theorem 3.1 as follows. Let n ∈ N,∆ > 0 and δ′ ∈ (0, 1) be
arbitrary.

P[D(n,∆, δ′) ≥ d] = P[∩n+d
s=1A(X1:s) = 0],

= P

[
n+d⋂
s=1

∥θ̂1:s − θ̂s+1:n+d∥22 ≤ B
(
s,

δ

2(n+ d)(n+ d+ 1)

)
+ B

(
n+ d− s− 1,

δ

2(n+ d)(n+ d+ 1)

)]
,

≤ P
[
∥θ̂1:n−1 − θ̂n:n+d∥22 ≤ B

(
n− 1,

δ

2(n+ d)(n+ d+ 1)

)
+ B

(
d,

δ

2(n+ d)(n+ d+ 1)

)]
.

(36)

From triangle-inequality, we know that

∥θ̂1:n−1 − θ̂n:n+d∥22 ≥ ∥θ1 − θ2∥22 − ∥θ̂1:n−1 − θ1∥22 − ∥θ̂n:n+d − θ2∥22,

= ∆2 − ∥θ̂1:n−1 − θ1∥22 − ∥θ̂n:n+d − θ2∥22. (37)

Thus, substituting Equation (37 into Equation (36), we get that

P[D(n,∆, δ′) ≥ d] ≤ P
[
∆2 − ∥θ̂1:n−1 − θ1∥22 − ∥θ̂n:n+d − θ2∥22 ≤

B
(
n− 1,

δ

2(n+ d)(n+ d+ 1)

)
+ B

(
d,

δ

2(n+ d)(n+ d+ 1)

)]
.

Denote by the events Ei for i ∈ {1, 2} as

E1 :=

{
∥θ̂1:n−1 − θ1∥22 > B

(
n− 1,

δ′

2

)}
,

E2 :=

{
∥θ̂n:n+d − θ2∥22 > B

(
d,
δ′

2

)}
,

Denote by E := E1 ∪ E2. Theorem 3.1 gives that P[E1] ≤ δ′

2(n(n+1)) ≤
δ′

2 and P[E2] ≤ δ′

2d(d+1) ≤
δ′

2 . Thus, an union bound
gives that P[E ] ≤ δ′. Let d′ ∈ G be arbitrary, where

G :=

{
d ∈ N : ∆2 ≥ B

(
n− 1,

δ′

2

)
+ B

(
d,
δ′

2

)
+ B

(
n,

δ

2(n+ d+ 1)(n+ d)

)
+ B

(
d,

δ

2(n+ d+ 1)(n+ d)

)}
(38)

Claim : If the event Ec holds, then D(n,∆, δ) ≤ d for all d ∈ G.

Suppose d ∈ G and event Ec holds. Then, we know by triangle inequality in Equation (37) that

∥θ̂1:n−1 − θ̂n:n+d∥22 ≥ ∥θ1 − θ2∥22 − ∥θ̂1:n−1 − θ1∥22 − ∥θ̂n:n+d − θ2∥22,

= ∆2 − ∥θ̂1:n−1 − θ1∥22 − ∥θ̂n:n+d − θ2∥22, (39)



Figure 5: Plot of D(n,∆, δ′) in Lemma 4.3 for fixed ∆ = 10, δ = 0.1.

(a)

≥ ∆2 − B
(
n− 1,

δ′

2

)
− B

(
d,
δ′

2

)
, (40)

(b)

≥ B
(
n,

δ

2(n+ d+ 1)(n+ d)

)
+ B

(
d,

δ

2(n+ d+ 1)(n+ d)

)
. (41)

Step (a) follows from the definition of event E and on the assumption of the claim that event Ec holds. Step (b) follows
from the fact that d ∈ G is arbitrary (cf. Equation (38). The last step says from Line 8 of Algorithm 1 that if no detection has
been made till time n+ d, then under the event Ec, time step d is a detection time. Since event Ec holds with probability
at-least 1− δ′ , this concludes the proof.

D.1 USEFUL CONVEXITY BASED INEQUALITIES

Let f : Θ → R be a strongly convex function with strong convexity parameters 0 < m ≤ M < ∞. Denote by
θ∗ := argminθ∈Θ f(θ). Since f(·) is convex and Θ is convex and compact, the existence and uniqueness of θ∗ is
guaranteed. Strong convexity gives that for any θ̂t−1 ∈ Θ,

f(θ∗) ≥ f(θ̂t−1) + ⟨∇f(θ̂t−1), θ
∗ − θ̂t−1⟩+

m

2
∥θ∗ − θ̂t−1∥22. (42)

Further since θ∗ = argminθ∈Θ f(θ)., we have that

f(θ̂t−1)− f(θ∗t ) ≥
m

2
∥θ̂t−1 − θ∗∥22.

Putting these two together, we see that

⟨∇f(θ̂t−1), θ̂t−1 − θ∗⟩ ≥ m∥θ̂t−1 − θ∗∥22. (43)

Also, We further use the following lemma.

Lemma D.1 (Lemma 3.11 from [Bubeck, 2015]). Let g : Rd → R be a M smooth and m strongly convex function. Then
for all x, y ∈ Rd,

⟨∇g(x)−∇g(y), x− y⟩ ≥ mM

M +m
∥x− y∥22 +

1

M +m
∥∇g(x)−∇g(y)∥22.

By substituting x = θ̂t−1, y = θ∗t and g(·) = f(·) and by leveraging the fact that∇f(θ∗) = 0, we get the inequality that

⟨∇f(θ̂t−1), θ̂t−1 − θ∗⟩ ≥
mM

m+M
∥θ̂t−1 − θ∗∥22 +

1

M +m
∥∇f(θ̂t−1)∥22.

Re-arranging, we see that

∥∇f(θ̂t−1)∥22 ≤ (M +m)⟨∇f(θ̂t−1), θ̂t−1 − θ∗⟩ −mM∥θ̂t−1 − θ∗∥22. (44)



E ADDITIONAL SIMULATIONS

In Figure 6, we plot a sample path of observed data and mark out the true change-points and the detected time-instants
by Algorithm 1. The plots indicate that although visually identifying the change in the means is hard, our change-point
detection algorithm is able to consistently across variety of distribution families.

(a) Unit-variance Gaussian. (b) Pareto with s = 2.1. (c) Pareto with s = 2.01.

(d) Alternate Pareto s = 2.01 and Gaussian. (e) Alternate Pareto s = 2.01 and Gaussian (f) Alternate Pareto s = 2.01 and Gaussian

(g) Pareto s = 2.01, d = 15,∆ = 5 (h) Pareto s = 2.01, d = 15,∆ = 2

Figure 6: In all plots, we choose the change-point gap to be ∆ = 0.1 and δ = 0.05 except (g) and (h) where ∆ = 5 and
2 respectively. In plots (g) and (h), we plot the norm of the observed random vector and thus the Y-axis is non-negative.
We see missed detection in Figures (e) and (h) with the last change-point on the right being missed. We do not observe
False-positives in these plots.
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