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Abstract

We prove an instance independent (poly) logarithmic regret for stochastic contextual bandits with
linear payoff. Previously, in Chu et al. (2011), a lower bound of O(

√
T ) is shown for the contextual linear

bandit problem with arbitrary (adversarily chosen) contexts. In this paper, we show that stochastic
contexts indeed help to reduce the regret from

√
T to polylog(T ). We propose Low Regret Stochastic

Contextual Bandits (LR-SCB), which takes advantage of the stochastic contexts and performs parameter
estimation (in `2 norm) and regret minimization simultaneously. LR-SCB works in epochs, where the
parameter estimation of the previous epoch is used to reduce the regret of the current epoch. The
(poly) logarithmic regret of LR-SCB stems from two crucial facts: (a) the application of a norm adaptive
algorithm to exploit the parameter estimation and (b) an analysis of the shifted linear contextual bandit
algorithm, showing that shifting results in increasing regret. We have also shown experimentally that
stochastic contexts indeed incurs a regret that scales with polylog(T ).

1 INTRODUCTION

Contextual bandits are sequential decision making systems, where a learner is typically equipped with
K actions (also called “arms”). At each round t ∈ [T ]1 the learner picks an action in the presence of
contextual side information. Algorithms for these class of problems typically employ a decision rule that
maps the context information to the action chosen. The goal of the learner is to maximize the reward (or
in other words, minimize the regret with respect to the best mapping in the hindsight). Contextual bandit
paradigm is typically used in advertisement placement Li et al. (2010), clinical trials Tewari and Murphy
(2017) and recommendation systems Agarwal et al. (2016).

The problem of contextual bandits with linear payoffs has a rich body of existing literature. This
framework was introduced by Abe et al. (2003); Auer (2002) and further developed in Li et al. (2010); Chu
et al. (2011). The framework of linear payoff—although simple, is expressive enough to capture several
practical real world problems, as explained in Abe et al. (2003); Li et al. (2010). In particular, Chu et al.
(2011) proposes a learning algorithm based on the UCB based optimistic idea. The resulting algorithm,
namely SupLinUCB considers arbitrary contexts (i.e., contexts are generated by an adversary) and obtains

a high probability regret of O(
√
dT log3(KT )), where d is the dimension of the contexts. In the same

paper, it is shown that if the contexts are adversarially generated, any contextual bandit algorithm with
linear payoff will incur Ω(

√
dT ) regret. Moreover, several variants of contextual bandits are also studied,

1Throughout the text, for positive integer r, the notation [r] refers to the set {1, 2, . . . , r}.
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for example, in supervised learning Beygelzimer et al. (2011), balanced exploration Dimakopoulou et al.
(2019) and in delayed systems Zhou et al. (2019).

The contextual bandit paradigm has also been investigated beyond linear rewards. As an instance,
Agarwal et al. (2012) and Agarwal et al. (2014) consider the K-armed generic contextual bandit system
and analyzes a regressor elimination type and projection smoothing based learning algorithms respectively,
which attains a regret guarantee of Õ(

√
KT ). These algorithms are computationally inefficient and depend

on an oracle. Furthermore, Foster and Rakhlin (2020) converts the generic contextual bandit problem to
an online regression problem, and obtains similar regret. Recently, Simchi-Levi and Xu (2021) proposes a
learning algorithm, namely FALCON, that obtains Õ(

√
KT ) regret in the presence of an offline regression

oracle. Moreover, Zhou et al. (2020) proposes a neural net based learning for contextual bandits.
In this paper, we stick to the framework of stochastic contextual bandits with linear payoff, and ask the

following

“Can (structured) stochastic contexts help in reducing the regret of linear contextual bandits?”

It turns out, the answer to this question is an astounding yes. In fact, if the stochastic contexts satisfy a
few regularity conditions, it is possible to break the Ω(

√
T ) regret barrier of Chu et al. (2011), and obtain

an instance-independent regret of O(polylog T ). We crucially exploit the stochasticity of the contexts. The
regularity conditions we impose (formally written in equation 1) enable us to do statistical estimation
(inference) and regret minimization simultaneously.

We emphasize that bandits with stochastic contexts are also studied quite extensively for contextual
linear bandits; for example Gentile et al. (2014) uses it for clustering in multi-agent systems, Chatterji et al.
(2020) uses it for binary model selection between linear and standard multi-armed bandits, Ghosh et al.
(2021b) uses it for model selection and Ghosh et al. (2021c) uses it for collaboration and personalization
in multi-agent systems. Furthermore, for generic contextual bandit problems beyond linear payoffs, the
assumption of stochastic contexts is quite common (see Agarwal et al. (2014, 2012); Simchi-Levi and Xu
(2021)).

In this work, we propose an epoch based learning algorithm, namely Low Regret Stochastic Contex-
tual Bandits (LR-SCB). In Theorem 5.1, we show that the (instance independent) regret of our proposed
algorithm scales as2 O(polylog(T )). We leverage the concurrent inference and regret minimization aspect
to obtain poly-logarithmic regret. Note that previously, in Gentile et al. (2014); Chatterji et al. (2020);
Ghosh et al. (2021c), this simultaneous estimation and regret minimization condition is used to perform
additional tasks (on top of regret minimization) such as clustering, model selection and personalization.

In LR-SCB, we break the learning horizon into epochs of increasing length. At each epoch, we simulta-
neously minimize regret and form an estimate of the underlying parameter. Let us assume the underlying
parameter for the linear contextual bandit is θ∗. In the first epoch, we play the standard contextual bandit
algorithm, OFUL of Chatterji et al. (2020)3 with stochastic contexts and learn an estimate θ̂ of θ∗. Sub-
sequently, in the next epoch, we modify the reward of the learning algorithm in a specific way, such that
underlying parameter we need to learn is θ∗ − θ̂. Hence, the sifted parameter will learn will have a small
norm, i,e., ‖θ∗− θ̂‖ is small, since θ̂ is an estimate of θ∗. In order to exploit this, we use the norm adaptive
algorithm, ALB-norm of Ghosh et al. (2021b), which gives regret proportional to the parameter norm. Note
that, owing to the proper shift, the norm of the shifted parameter is small, which in turn results in a small
regret. We keep on doing this over multiple epochs, and shift the underlying parameter accordingly. With
an appropriate choice of epoch lengths, it turns out that this phase based algorithm attains a regret of
O(polylog(T )).

2We have a worse dependence on the context dimension d.
3In fact, we play a variation of the OFUL algorithm, see Section 4. For completeness, we reproduce this in Algorithm 2.
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1.1 Our Contributions:

1.1.1 Algorithmic

We propose an epoch based learning algorithm for stochastic contextual bandits. Our algorithm, LR-SCB
introduces proper shifts to the underlying unknown parameters, and uses a norm adaptive algorithm,
ALB-norm repeatedly over epochs. We obtain an instance independent polylog(T ) regret for the stochastic
contextual linear bandit, thus breaking the

√
T barrier shown in Chu et al. (2011). We show that stochastic

contexts indeed help in reducing the regret. To the best of our knowledge, this is the first work to show a
(poly) logarithmic instance independent regret for stochastic contextual bandits.

1.1.2 Technical novelty

A key technical challenge we encounter is the characterization of ALB-norm under shifts. We argue in
Appendix A that it is sufficient to understand the behavior of the shifted OFUL system, and in Section 6
as well as in Appendix D, we rigorously analyze the shifted OFUL (which might also be of independent
interest). For this, we derive an anti-concentration property for the contexts, and in conjunction with
independence, we show that OFUL is indeed robust to shifts, and shifting can only increase the regret.

Furthermore, we also require ALB-norm to yield parameter estimation guarantee, similar to OFUL, and
in Appendix C, we show that indeed, ALB-norm outputs the required guarantees.

1.1.3 Experiments

We validate our theoretical findings via experiments. In particular for different context dimension, we
characterize the regret of LR-SCB with respect to log T , and compare it with OFUL as a baseline. We
observe that LR-SCB outperforms OFUL in terms of regret. Furthermore, to understand the regret scaling
of LR-SCB better, we plot log regret with respect to log log T , and obtain a straight line with slope around
2. This implies that the regret of LR-SCB is indeed polylog(T ), which confirms our theoretical result.

2 RELATED WORK

Contextual Bandits: The literature on contextual bandits is quite rich, starting from Auer (2002); Abe
et al. (2003). Around 2010, with the motivation of recommendation, the study of contextual bandits got
some momentum with seminal papers like Li et al. (2010); Chu et al. (2011). Most of these papers assume
arbitrary, adversarially generated contexts and obtain regret rates of O(

√
T ). Furthermore, several variants

of contextual bandits is studied in the literature, for example, in delayed systems Zhou et al. (2019) and
in supervised learning.

Apart from this linear contextual bandits, there has been a significant effort to understand the generic
contextual bandits Agarwal et al. (2012, 2016). Most of these algorithms are non-implementable and
very recently Foster and Rakhlin (2020); Simchi-Levi and Xu (2021) proposes a reduction of the generic
contextual bandit problem to an online and offline regression respectively. Very recently, stochastic contexts
are used in linear contextual bandits, for example Chatterji et al. (2020); Gentile et al. (2014). The regret
guarantee for these algorithms also scale with O(

√
T ). On the other hand, in this work we exploit the

stochastic contexts to simultaneously estimate and minimize regret and as a result, we obtain a regret of
polylog(T ), thus breaking the

√
T barrier.

Adaptive Bandit Algorithms: As explained in Section 1, the use of an adaptive algorithm that exploits
the small norm enables our learning algorithm to obtain logarithmic regret. Adaptive algorithms in bandits
have gained a lot of interest in the recent years, for example in Ghosh et al. (2021b), the authors define
parameter norm and sparsity as complexity parameters for stochastic linear bandit and adapt to those
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without any apriori knowledge. Foster et al. (2019) also adapts to the sparsity in a linear bandit problem,
whereas Pacchiano et al. (2020) uses the corrall framework of Agarwal et al. (2017) to obtain adaptive
algorithms for bandits and reinforcement learning. In the corralling framework, the base algorithms are
treated as bandit arms, and a learning algorithm is played to choose the correct model. Very recently,
the adaptation question is also addressed for generic contextual bandits Krishnamurthy and Athey (2021);
Ghosh et al. (2021d). Apart from this, in reinforcement learning, a few recent works have started inquiring
the question of adaptation, for example Lee et al. (2021) in the framework of function approximation and
Ghosh et al. (2021a) for generic (but separable) reinforcement learning.

3 PROBLEM SETUP

We consider the setup of stochastic contextual bandit with linear payoffs Chu et al. (2011); Chatterji et al.
(2020). At the beginning of each round t ∈ [T ], the learner chooses one of the K available arms, and
gets a reward. To help the learner make the choice of the arm, at each round, the learner is handed K
context vectors, d dimensional each, denoted by βt = [β1,t, . . . , βK,t] ∈d×K . When the learner chooses arm
i, the reward obtained is given by 〈βi,t, θ∗〉 + ξt, where θ∗ is the d-dimensional unknown parameter, with
‖θ∗‖ ≤ 1, and {ξt}Tt=1 denote the noise.

Stochastic Assumptions: We assume that the contexts are stochastic, following the framework of
Chatterji et al. (2020); Ghosh et al. (2021b). We denote the sigma algebra generated by all noise random
variables upto and including time t − 1 by Ft−1. Moreover, by Et−1(.) and Vt−1(.), we denote the as the
conditional expectation and conditional variance operators respectively with respect to Ft−1. We further
assume that the noise parameter, (ξt)t≥1 are conditionally sub-Gaussian noise with known parameter σ,
conditioned on all the arm choices and realized rewards in the system upto and including time t− 1, and
without loss of generality, let σ = 1 throughout.

The contexts {βt}Tt=1 are assumed to be bounded—in particular, we let the contexts be drawn from
[−c/
√
d, c/
√
d]⊗d, where c is a universal constant and the 1/

√
d scaling is without loss of generality, so that

the norm of the contexts are O(1). Moreover, the contexts βi,t are assumed to be drawn independent of
the past and {βj,t}j 6=i, from a distribution satisfying

Et−1[βi,t] = 0 Et−1[βi,t β
>
i,t] � ρminI. (1)

Furthermore, for any fixed z ∈ Rd, with unity norm, the random variable (z>βi,t)
2 is conditionally sub-

Gaussian, for all i, with Vt−1[(z>βi,t)
2)] ≤ 4ρmin. This means that the conditional mean of the covariance

matrix is zero and the conditional covariance matrix is positive definite with minimum eigenvalue at least
ρmin. Furthermore, the conditional variance bound assumption is for technical reasons and is crucially
required to apply (1) for contexts of (random) bandit arms selected by our learning algorithm (see Lemma
1 of Gentile et al. (2014)).

Note this this above set of assumptions on context vectors is not new and the exact set of assumptions
were used in Gentile et al. (2017); Chatterji et al. (2020); Ghosh et al. (2021c,b)4. In Gentile et al. (2017),
the authors introduced the above-mentioned set of assumptions and use them for parametric inference on
top of regret minimization for online clustering problem with bandit information. Chatterji et al. (2020)
uses the same context assumptions for binary model selection between simple multi-armed and contextual
linear bandits. Furthermore, Ghosh et al. (2021b) uses the identical assumptions to obtain an adaptive
problem complexity adaptive regret guarantees for linear bandits and Ghosh et al. (2021c) uses these
assumptions to ensure personalization for multi-agent linear bandits. Apart from the above mentioned
papers, (Foster et al., 2019) uses similar assumptions for stochastic linear bandits and (Ghosh et al.,
2021a) uses it for model selection in Reinforcement learning problems with function approximation. In all
of the above papers, the authors need parametric inference in conjunction with regret minimization, which

4The conditional variance assumption is implicitly used in (Chatterji et al., 2020) without explicit statement.
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is a harder task. If the stochastic contexts are structured, these two tasks can be performed simultaneously.
It turns out that the above-mentioned set of assumptions are sufficient to ensure this.

Example: Although we present here the technical conditions needed on contexts, this include simple
examples as well. As an instance, it includes the simple setting where the contexts evolve according to
a random process independent of the actions and rewards from the learning algorithm. Hence, any zero
mean (full rank) iid random variables drawn from a (coordinate-wise) bounded space, generated exogenous
to the actions of the agents can be taken as stochastic contexts. As an example, random vectors drawn in
an i.i.d manner across rounds from Unif[−c0/

√
d, c0/

√
d]⊗d for a constant c0. For this we have ρmin = c1/d,

where c1 is a constant. In Section 5, we take this uniform distribution as a special case and completely
characterize its perfromance.

Note that the above-mentioned framework of generating contexts are quite standard in the generic
contextual bandit literatureAgarwal et al. (2012, 2014) as well, where at each round nature picks a context
sampled i.i.d in each round from a fixed and known distribution.

Performance Metric: At time t, we denote Bt ∈ [K] as the arm played by the agent. We want to
compete with the optimal arm. Since we do not know θ∗, we are bound to incur some error characterized
by an equivalent regret term. The regret, over a time horizon of T is given by

Ri(T ) =

T∑
t=1

max
j∈[K]

〈βj,t, θ∗〉 − 〈βBt,t, θ
∗〉 (2)

4 Low Regret Stochastic Contextual Bandits (LR-SCB)

Throughout this paper, we refer OFUL as the optimistic learning algorithm of Abbasi-yadkori et al. (2011)
for linear bandits. In fact Chatterji et al. (2020) uses this in the finite armed contextual framework, and
we use a variation of their OFUL algorithm, without arm biases. For completeness, we reproduce this in
Algorithm 2. We use OFUL as a black box in Algorithm 2.

We now present the algorithm for the stochastic contextual bandit. We divide the learning horizon
into epochs of length T1, T2, . . . , TN , where N is the number of epochs. In the first phase T1, we aim to
minimize regret and estimate the parameter θ∗ simultaneously for T1 rounds. At the end of this phase, we
obtain an estimate θ̂T1 , of θ∗.

Subsequently, in the second phase, which lasts for T2 rounds, our goal is to utilize the estimate θ̂T1 .

Here, we aim to learn the parameter θ∗ − θ̂T1 . Note that, the norm of θ∗ − θ̂T1 is small since we spend
the previous epoch to learn θ∗. Hence, in this epoch, instead of using the OFUL algorithm, we use an
adaptive algorithm that exploits the small norm. In particular, we use a modified version (reproduced
in Algorithm 3) of the Adaptive Linear Bandits-norm (ALB-norm) of Ghosh et al. (2021b), that exploits
the small norm of θ∗ − θ̂T1 to obtain a reduced regret, which depends linearly on ‖θ∗ − θ̂T1‖. As seen in

Algorithm 1, the learning of θ∗− θ̂T1 is achieved by shifting the reward by the inner product of the estimate

θ̂T1 . By exploiting the anti-concentration of measure along with some standard results from optimization,
we show, in Section 6 as well as in Appendix D that the regret of the shifted system is worse than the
regret of the original system (in high probability)5.

We now continue the above-mentioned estimation procedure in the third epoch as well, which lasts
for T3 rounds. Here, we exploit the fact that at the end of the second epoch, we obtain θ̂T2 , which is

an estimate of θ∗ − θ̂T1 . In Appendix C, we show that similar to the OFUL algorithm, ALB-norm also
constructs an estimate of the parameter under consideration. Basically, ALB-norm is equivalent to playing
the OFUL algorithm in successive epochs with norm refinements. Using the fact that ‖θ∗ − θ̂T1 − θ̂T2‖ is

5This is intuitive since, otherwise one can find appropriate shifts to reduce the regret of OFUL, which contradicts the
optimality of OFUL.
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Algorithm 1 Low Regret Stochastic Contextual Bandits (LR-SCB)

1: Input: Horizon T , Initial epoch length T1

First phase, i = 1:

2: Initialize a single instance of OFUL(δ) (see Algorithm 2)
3: for times t ∈ {1, · · · , T1} do
4: Play the action given by the common OFUL
5: Update OFUL’s state by the observed rewards similar to Algorithm 2
6: end for
7: Let est← θ̂T1 ; the parameter estimate of Common OFUL at the end of phase 1

Subsequent Phases:

8: for phase i ∈ {2, . . . , N} do
9: δi ← δ

2i−1

10: Ti = T1(log T )i−1

11: Initialize one (modified) ALB-Norm(δ) (see Algorithm 3 of Appendix) instance per agent
12: for times t ∈ {Ti + 1, . . . , Ti+1} do
13: Play arm by ALB-Norm (denoted as βBt,t) and receive reward yt
14: Every agent updates their ALB-Norm state with corrected reward

ỹt = yt − 〈βBt,t, est〉

15: end for
16: θ̂Ti : parameter estimate after i-th epoch

17: est← est + θ̂Ti
18: end for

Algorithm 2 OFUL of Chatterji et al. (2020)

1: Input: Parameters b, δ > 0, number of rounds T̃
2: for t = 1, 2, . . . , T̃ do
3: Select the best arm estimate as

jt = argmaxi∈[K]

[
max
θ∈Ct−1

{〈αi,t, θ〉}
]
,

where Ct is the confidence set with radius b+
√
d

ρmin

√
t

log(KT̃/δ)

4: Play arm jt, and update Ct
5: end for

small, we again use the norm adaptive algorithm ALB-norm to obtain smaller regret. Hence, the regret in
this phase is proportional to ‖θ∗ − θ̂T1 − θ̂T2‖.

So, this successive estimation procedure continues upto the N -th epoch. At each epoch, we shift the
reward by an inner product obtained of the estimate obtained from the previous round. The algorithm
is detailed in Algorithm 1. Note that in the above algorithm, we use the estimate obtained in the pre-
vious epoch and judiciously use a norm adaptive (which adapts to the norm of the problem) algorithm.
By judiciously choosing the time epochs, we show that the overall regret of LR-SCB can be reduced to
O(polylogT ).
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Algorithm 3 Adaptive Linear Bandit (norm)–ALB-Norm of Ghosh et al. (2021b)

1: Input: The initial exploration period τ1, intial phase length T1 := d
√
T e, δ1 > 0, δs > 0.

2: Select an arm at random, sample 2τ rewards
3: Obtain initial estimate (b1) of ‖θ∗‖ according to Section 3.3 of (Ghosh et al., 2021b).
4: for epochs i = 1, 2 . . . , N do
5: Play OFUL (Algorithm 2) with slack δi and norm estimate bi until the end of epoch i (denoted by

Ei)
6: At t = Ei, refine estimate of ‖θ∗‖ as,

bi+1 = max
θ∈CEi

‖θ‖

7: Set Ti+1 = 2Ti
8: δi+1 = δi

2 .
9: end for

5 Regret Guarantee for LR-SCB

In this section, we provide the regret guarantee of LR-SCB. We stick to the notation of Section 3. Moreover,
we select the time epochs in the following manner: Ti = T1(log T )i−1. With this choice, the number of

epochs is given by, N = O
(

log(T/T1)
log log T

)
. To ease notation, let us define

Λ =

(
1

(log log T )
log

(
ρ2

minT

d2 log4(KT/δ) log(dT/δ)

))
and,

T = log3

(
Kd2(log T )(log4KT/δ)(log dT/δ)

ρ2
min δ

)
× log2

(
d3(log T )(log4KT/δ)(log dT/δ)

ρ2
min δ

)
We have the following theorem.

Theorem 5.1 Playing Algorithm 1 with initial phase length T1 time and probability slack δ > 0, where

T1 = C1
d2

ρ2
min

log4(KT/δ) log(dT/δ) and

d ≥ C1
log T

log log T
log(K2/δ).

Then the regret of the player for a horizon of T satisfies

R(T ) ≤ C2

[(
d

ρmin

)3/2

Λ5 T
√

log T

]

= O

((
d

ρmin

)3/2

polylog(T,K, d, δ)

)

with probability at least 1− cδ, where c, C,C1, C2 are universal constants.
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The proof is deferred to the Appendix. We make the following remarks:

Remark 5.2 The above theorem shows that the (instance independent) regret of stochastic contextual
bandits is polylog(T ). This is a huge improvement over the

√
T regret presented in Chu et al. (2011); Li

et al. (2010); Chatterji et al. (2020). So, the stochastic contexts indeed help in regret reduction.

Remark 5.3 Note that the dependence on dimension d is worse in LR-SCB compared to SupLinUCB of Chu

et al. (2011) (O
((

d
ρmin

)3/2
)

vs. O(
√
d)). Furthermore, one needs d ≥ log(K2) for the anti-concentration

of the contexts to kick in, which was crucial in the analysis of the shifted OFUL.

Remark 5.4 We require the initial length T1 = Õ(d2/ρ2
min) for the norm adaptive algorithm, ALB-norm

to work (see Ghosh et al. (2021b)).

5.0.1 Special Case—Contexts are drawn from Uniform Distribution

Here we assume the contexts come from Unif[−c0/
√
d, c0/

√
d]⊗d for a constant c0. For this we have

ρmin = c1/d, and hence the following result.

Corollary 5.5 Suppose the initial phase length T1 = Õ(d4) and d ≥ C1
log T

log log T log(K2/δ). Playing Algo-
rithm 1 for T times incur a regret of

R(T ) ≤ O
(
d3 polylog(T,K, d, δ)

)
,

with probability at least 1− δ.

5.1 Proof Sketch

We now present a brief proof sketch of Theorem 5.1. The full proof is deferred to Appendix A. For simplicity
and the clarity of exposition, we only focus on the dependence on time horizon T . We break the learning
horizon in epochs of lengths T1, T2, . . . , TN .

Regret in Epoch 1: In the first epoch, we play the OFUL algorithm (Algorithm 2). Hence, for Chatterji
et al. (2020), we incur a regret of O(

√
T1).

Regret in Epoch 2: In the second epoch, we use the parameter estimate learned in the first epoch and
accordingly modify the reward functions. Hence, the underlying parameter in second epoch is the shifted
parameter. We leverage the analysis of a shifted OFUL to handle this. Moreover, note that since we are
estimating θ∗ in the first epoch, from Chatterji et al. (2020), we have

‖θ̂T1 − θ∗‖ ≤ O(1/
√
T1)

In order to exploit the fact that the norm of the shifted parameter is small, we use a norm-adaptive
algorithm, namely ALB-norm, in this round, whose regret is given by

Regepoch 2 = O(‖θ̂T1 − θ∗‖)
√

1

T2
= O(

√
T2

T1
)

Regret in Subsequent Epochs: We continue to shift the parameter by the estimate learnt from the
previous epoch. For Epoch 3, we learn θ̂T2 , which is an estimate of the parameter θ∗− θ̂T1 . Using the same
ALB-Norm, the regret here is

Regepoch 3 = O(‖θ̂T2 − (θ∗ − θ̂T1)‖)
√

1

T3
= O(

√
T3

T2
)

8



(a) d = 20,K = 20 (b) d = 25,K = 20 (c) d = 30,K = 20

Figure 1: Regret Scaling with respect to horizon T for OFUL and LR-SCB. The plots are produced by
taking an average over 50 trials.

Total Regret: Combining the above expressions, the total regret is given by

R(T ) ≤ O

(√
1

T1
+

N∑
i=1

√
Ti
Ti−1

)

Choice of Ti: We choose aggressively increasing epoch lengths. This is because, we get to exploit the
estimation performance of previous epoch to the new one, and get low regret owing to norm adaptive

algorithms. We select Ti = T1(log T )i−1, and as a result, the total number of epochs is N = O
(

log(T/T1)
log log T

)
.

Choice of T1: We use the ALB-norm algorithm of Ghosh et al. (2021b), which imposes a condition on
T1. It turns out (showed formally in Appendix A) we require T1 ≥ Õ(d2/ρ2

min). Hence, with the above
choice of T1 and combining the regret in different epochs, we obtain

R(T ) ≤ O (polylog(T )) ,

which proves the theorem.

6 Shifted OFUL

In this section, we establish a relationship between the regret of the standard OFUL algorithm and the
shift OFUL for linear contextual bandits, and show that shifts can not reduce the regret of OFUL. We
crucially leverage the analysis of shifted OFUL in Algorithm 1. Beyond Algorithm 1, this analysis may be
of independent interest.

We keep the problem setup same as Section 3. We define the shifted version of OFUL below.
Recall that the OFUL algortihm is used to make a decision of which action to take at time-step t, given

the history of past actions X1, · · · , Xt−1 and observed rewards Y1, · · · , Yt−1. The Γ shifted OFUL is an
algorithm identical to OFUL that describes the action to take at time step t, based on the past actions

X1, · · · , Xt−1 and the observed rewards Ỹ
(Γ)

1 , · · · , Ỹ (Γ)
t−1 , where for all 1 ≤ s ≤ t− 1, Ỹs = Ys − 〈Xs,Γ〉.

Let us first recall the definition of regret for an un-shifted standard OFUL instance.

Definition 6.1 (OFUL) For a linear contextual bandit instance with unknown parameter θ∗, and a se-
quence of (possibly random) actions X1:T := X1, · · · , XT , we denote the regret obtained upto round T
as

RT (X1:T ) :=
T∑
t=1

max
1≤j≤K

〈βj,t −Xt, θ
∗〉.

9



Using the same notation as above, we now define the regret of an instance of the Γ shifted system.

Definition 6.2 (Γ shifted OFUL) For a linear contextual bandit system with unknown parameter θ∗,
the modified set of rewards and a sequence of (possibly random) actions X1:T := X1, · · · , XT , we denote
its regret upto time T as

R
(Γ)
T (X1:T ) :=

T∑
t=1

max
1≤j≤K

〈βj,t −Xt, θ
∗ − Γ〉

We now show that the shifted OFUL algorithm incurs higher regret than that of unshifted one, with high
probability. We have the following result.

Lemma 6.3 Consider a linear contextual bandit instance with parameter θ∗ with ||θ∗|| ≤ 1 and the con-
text vectors at each time are sampled independently from any (coordinate-wise) bounded distribution (i.e.,
[−c/
√
d, c/
√
d]⊗d) for a constant c. Let Γ ∈ Rd be such that ||θ∗ − Γ|| ≤ ψ for a constant ψ < 1

2
√

2
, and

X1:T = (X1, · · · , XT ) be the set of actions chosen by the Γ shifted OFUL. Then, with probability at-least(
1−

(
K
2

)
e−c1d −Ke−c2 d

)
,

RT (X1:T ) ≤ R(Γ)
T (X1:T ),

where the constants c1 and c2 depend on ψ.

Remark 6.4 The above lemma shows that for a deterministic Γ shift, provided d ≥ Ω(logK), the shifted
system always suffers higher regret with probability at least 1− c exp(−c1 d)

6.0.1 Proof Sketch

The proof of the above Lemma is deferred in Appendix D. We now give a brief sketch here. To show the
above, we first show the following using definitions and some basic facts in optimization literature.

Proposition 6.5 Suppose for a linear contextual bandit instance with parameter θ∗, an algorithm plays
the sequence of actions X1, · · · , XT , then

RT (X1:T ) ≤ R(Γ)
T (X1:T )

+

T∑
t=1

(
〈Xt − argmax

β∈{β1,t,··· ,βK,t}
〈β, θ∗〉,Γ〉

)
.

From the above, it is clear that provided,

argmax
β∈{β1,t,··· ,βK,t}

〈β, θ∗〉 = argmax
β∈{β1,t,··· ,βK,t}

〈β,Γ〉,

the second term in Proposition 6.5 is negative, and we have Lemma 6.3. We now concentrate on the
probability under which the above mentioned event occurs. For this, we use the anti-concentration property
of the coordinate-wise bounded (and hence sub-Gaussian) random variables, along with the fact that the
contexts are drawn in an independent manner. Leveraging these, we obtain the probability of the above-
mentioned event is at least 1−

(
K
2

)
e−c1d −Ke−c2 d, which proves the lemma.

7 Simulations

In this section, we validate our theoretical findings of Section 5 via simulations. We assume that the
contexts are drawn i.i.d from Unif[−1/

√
d, 1/
√
d]⊗d. We run Algorithm 1 with K = 20 arms with different

dimension d = {20, 15, 30}. Moreover, we compare our results with that of the OFUL (Algorithm 2), and
show the LR-SCB attanins much smaller regret compared to OFUL.

10



(a) d = 20,K = 20 (b) d = 25,K = 20 (c) d = 30,K = 20

Figure 2: Regret Scaling with respect to log T for OFUL and LR-SCB. Note that the regret of LR-SCB grows
much slowly, compared to OFUL. The plots are produced by taking an average over 50 trials.

(a) d = 20,K = 20 (b) d = 25,K = 20 (c) d = 30,K = 20

Figure 3: Scaling of logR(T ) with respect to log log T for OFUL and LR-SCB. The linear increase of LR-SCB
indicates a polylog(T ) regret. The plots are produced by taking an average over 50 trials.

7.0.1 R(T ) vs. T :

We first plot the the variation of regret R(T ), with respect to the learning horizon T for OFUL as well as
LR-SCB, for different dimension d ∈ {20, 25, 30}. It is shown in Figure 1. We observe that the regret of
LR-SCB is much smaller than that of OFUL. This indeed validates our theoretical finding, since for OFUL,
the regret ROFUL(T ) = O(

√
T ), and for LR-SCB, from Theorem 5.1, RLR−SCB(T ) = O(polylogT ). We run

50 instances, and take average over trials to obtain the plots in Figure 1.

7.0.2 R(T ) vs. log T

To understand the regret scaling a bit better, we now plot the ROFUL(T ) and RLR−SCB(T ) with log T .
The plots are shown in Figure 2. We observe here that the regret scales quite aggressively for OFUL, while
it increases at a much slower rate for LR-SCB.

Note that since, ROFUL(T ) = O(
√
T ), the plot of ROFUL(T ) vs. log T is expected to grow at an

exponential speed, which we can see from Figure 2 in all 3 cases. On the other hand, since RLR−SCB(T ) =
O(polylogT ), the ROFUL(T ) vs. log T plot is expected to grow at a polynomial rate, which is evidenced
by the slow rate of increase. Hence, Figure 2 clearly hints towards a polylog(T ) regret of LR-SCB, which
validates Theorem 5.1.
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7.0.3 logR(T ) vs. log log T

In order to further understand the regret scaling of LR-SCB, we plot logR(T ) against log log T , for both
OFUL and LR-SCB. The results are shown in Figure 3. Note that for LR-SCB, we obtain lines with slope
slightly more than 2.

This clearly indicates aO(polylogT ) regret of LR-SCB. Recall that the regret of LR-SCB is RLR−SCB(T ) =
O(polylogT ), and hence logRLR−SCB is a linear function of log log T , which we evidence. Furthermore, this
hints that the polynomial dependence on log T is close to a quadratic one. On the other hand, for OFUL,
note that the log regret is not a straight line, and keeps on increasing. This implies that the regret of
OFUL is not poly-logarithmic, which matches the known results. We emphasize that, it is quite non-trivial
to capture the regret of OFUL and LR-SCB in log log T scale. Hence, we ran the learning algorithms for
T = 5× 107, to get the above mentioned results.

8 Conclusion and Future work

In this paper, we exploit the stochasticity of the contexts and obtain an instance-independent poly loga-
rithmic regret bound for linear contextual bandits. Our analysis crucially relies on leveraging the norm
adaptive learning algorithms, like ALB-norm. In this paper, we only obtain an upper bound, and hence a
natural question arises about the tightness of the result. An immediate future work is to obtain an lower
bound in the presence of stochastic context, and see whether our result is tight. Additionally, we want to
understand the (structured) stochastic contextual bandit framework beyond linearity, and ask for similar
guarantees. We keep these as our future endevors.
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Supplementary Material for “Logarithmic Regret for Stochastic
Contextual Linear Bandits”

A Proof of Theorem 5.1

Regret in Phase 1: We run the OFUL algorithm (shown in Algorithm 2 for T1 time steps. Hence, in
this phase, the center indeed learns the parameter θ∗. Let θ̂T1 be the corresponding estimate. Provided,
T1 > τmin(δ), from (Chatterji et al., 2020), we have,

‖θ̂T1 − θ∗‖ ≤ O

(√
d

ρminT1

)
log(KT1/δ) log(dT1/δ),

with probability at least 1− δ. The corresponding regret (call it RT1) is

RT1 = O

(√
dT1

ρmin

)
log(KT/δ) log(dT/δ),

with probability at least 1− δ.

Regret in Phase 2: In this phase, we take advantange of the learned paameter, θ̂T1 . Here, the learning
proceeds as the following: At each time t, out of K contexts, {βr,t}Kr=1, suppose the player chooses a context
vector, βr,t, (corresponding to the r-th arm). Thereafter, the player generates the reward yt = 〈βr,t, θ∗〉+ξi,t.
Subsequently, using the previous estimate, the player calculates the corrected reward

ỹt = yt − 〈βr,t, θ̂T1〉.

Note that the player has the information about (βr,t, θ̂T1) and so it can compute ỹt. With this shift, the

center basically learns the vector θ−θ̂T1 .
In this phase, we use a variation of the ALB-norm algorithm of (Ghosh et al., 2021b)6. The variation

is reproduced in Section B. Note that the ALB-norm algorithm is a norm adaptive algorithm, which is
particularly useful when the parameter norm is small. ALB-norm uses the OFUL algorithm of (Chatterji
et al., 2020) repeatedly over doubling epochs. At the beginning of each epoch, it estimates the parameter
norm, and runs OFUL with the norm estimate (see (Ghosh et al., 2021b, Algorithm 1)), and keeps on
refining it. Hence, it is shown in (Ghosh et al., 2021b, Algorithm 1) that while estimating the parameter
Ψ∗, with high probability, the regret of ALB-norm is

RALB-norm ≤ ‖Ψ∗‖ ROFUL.

We use the ALB-Norm with this shifted system. However, since ALB-Norm is equivalent to playing the
OFUL algorithm on doubling epochs, it is sufficient to obtain the performance of a shifted OFUL system,
and the same conclusion extends to ALB-Norm (see Ghosh et al. (2021b)). In Appendix D, we present an
analysis of shifted OFUL. In particular we show that shifts (by a fixed vector) can not reduce the regret
(which is intuitive). Note that we learn θ̂T1 in the previous phase, and fix it throughout this phase. Hence,
conditioned on the observations of the first phase, θ̂T1 is a fixed (deterministic) vector. In particular, in

6We reproduce the algorithm in Appendix B.
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Lemma D.9, it is shown that provided d ≥ C log(K2/δ2), we have ROFUL ≤ RshiftOFUL with probability at
least 1− δ2.

Hence, using Lemma D.9 of Appendix D, the regret in phase 2 (call it RT2) is given by

RT2 ≤ O

(
‖θ∗ − θ̂T1‖

√
dT2

ρmin
log(KT2/δ2) log(dT2/δ2)

)
,

with probability at least 1− cδ2, provided d ≥ C log(K2/δ2). Substituting, we obtain

RT2 ≤ O

(
d

ρmin

√
T2

T1

)
log2(KT2/δ2) log2(dT2/δ2)

with probability exceeding 1− cδ2.

Regret in Phase 3: At the end of phase 2, we obtain the estimate θ̂T2 . Note that this is an estimate of

θ∗ − θ̂T1 . In Phase 3, the idea is to exploit this estimate. The intuition is similar to that of phase 2. Since

θ̂T2 is an estimate of θ∗ − θ̂T1 , the quantity ‖θ∗ − θ̂T1 − θ̂T2‖ will be small, an a norm-adaptive algorithm,
like ALB-norm should exploit this fact.

In order to show this, we first show that, similar to the OFUL algorithm, it is possible for the ALB-norm

algorithm to estimate the parameter of interest. In Appendix C, we show this formally. Intuitively, this
makes sense, since ALB-norm is basically the OFUL algorithm of Chatterji et al. (2020) applied repeatedly
over doubling epochs. Since, the OFUL algorithm estimates the underlying parameter, in Section C, we
show that ALB-norm also performs similar parameter estimation.

Furthermore, now the corrected regret is given by,

ỹt = yt − 〈βr,t, θ̂T1〉 − 〈βr,t, θ̂T2〉.

In other words, we shift the center by an amount given corresponding to θ̂T1 + θ̂T2 . We use the same

analysis in Section D to show that provided d ≥ C log(K2/δ3), we have ROFUL ≤ RshiftOFUL. Hence, the
regret of this phase is given by,

RT3 ≤ O

(
‖θ∗ − θ̂T1 − θ̂T2‖

√
dT3

ρmin
log(KT3/δ3) log(dT3/δ3)

)

≤ O

(
d

ρmin

√
T3

T2

)
log2(KT3/δ3) log2(dT3/δ3)

with probability at least 1− cδ3.

Subsequent Phases: For phase i > 3, the same argument holds, and the regret is given by,

RTi ≤ O

(
d

ρmin

√
Ti
Ti−1

)
log2(KTi/δi) log2(dTi/δi)

with probability at least 1− cδi, provided d ≥ C log(K2/δi).
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Total Regret: We now characterize the total regret of the agent. Let us assume the number of phases
is N . We have

RT = RT1 + . . .+RTN

≤ O(

√
d

ρmin

√
T1) log(KT1/δ) log(dT1/δ) +

N∑
i=2

O

(
d

ρmin

√
Ti
Ti−1

)
log2(KTi/δi) log2(dTi/δi).

Since we consider δi = δ/2i−1, the above regret holds with probability at least

1− c(δ1 + δ2 + . . .+ δN )

≥ 1− (δ + δ/2 + δ/4 + . . .)

≥ 1− 2cδ,

where c is an universal constant.
We now choose the length of phases as

Ti = T1(log T )i−1,

where T1 is the initial length. With this, we obtain, the number of epochs, N = O
(

log(T/T1)
log log T

)
. Subse-

quently, the overall regret is given by,

RT ≤ O

[
(

√
d

ρmin

√
T1) log(KT/δ) log(dT/δ) +N

d

ρmin

√
log T N2 log2(KT1(log T )/δ) N2 log2(dT1(log T )/δ)

]
,

where we substitute δi and upper bound the number of epochs by N . Substituting N , we obtain

RT ≤ O

[
(

√
d

ρmin

√
T1) log(KT1/δ) log(dT1/δ) +

d
√

log T

ρmin

(
log(T/T1)

log log T

)5

log2(KT1(log T )/δ) log2(dT1(log T )/δ)

]
,

with probability at least 1− cδ, provided

d ≥ CN log(K2/δ) ≥ C
(

log(T/T1)

log log T

)
log(K2/δ)

The next job is to choose the length of the first epoch T1. For the norm adaptive algorithm, ALB-norm
to work, one needs (from (Ghosh et al., 2021b, Theorem 1))

T1 = C max

{
d2

ρ2
min

log4(KT/δ), τmin(δ)2

}

for a large enough universal constant C, where τmin =

[
16
ρ2min

+ 8
3ρmin

]
log(2dT

δ ). Hence, we need to choose

T1 = C1
d2

ρ2
min

log4(KT/δ) log(dT/δ).

To ease notation, let us define

Λ =

(
1

(log log T )
log

(
ρ2

minT

d2 log4(KT/δ) log(dT/δ)

))
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and,

T = log3

(
Kd2(log T )(log4KT/δ)(log dT/δ)

ρ2
min δ

)
log2

(
d3(log T )(log4KT/δ)(log dT/δ)

ρ2
min δ

)
With this, the overall regret is given by

RT ≤ O

[(
d

ρmin

)3/2

T +

(
d

ρmin

)
Λ5 T

√
log T

]

≤ O

[(
d

ρmin

)3/2

Λ5 T
√

log T

]
,

with probability at least 1− cδ. This requires,

d ≥ C
(

log(T/T1)

log log T

)
log(K2/δ).

Since, T1 is a function of d, we choose a sufficient condition on d, which is given by

d ≥ C
(

log T

log log T

)
log(K2/δ),

which concludes the proof.

B Modified ALB-Norm from (Ghosh et al., 2021b)

In this section, we reproduce ALB-Norm from (Ghosh et al., 2021b), and prove a Corollary of the main
theorem from (Ghosh et al., 2021b).

Corollary B.1 (Corollary of Theorem 1 from (Ghosh et al., 2021b)) The regret of Algorithm 3 at
the end of T time-steps satisfies with probability at-least 1− 18δ1 − δs,

R(T ) ≤ C‖θ∗‖(
√
K +

√
d)
√
T log

(
KT

δ1

)
,

where C is an universal constant.

The proof follows by recomputing Lemma 1 from (Ghosh et al., 2021b) as follows.

Lemma B.2 If T is sufficiently large such that 2Cσ
√
d

T
1
4

log
(
K
√
T

δ1

)
≤ 1, then with probability at-least 1 −

8δ1 − δs, for all i large, bi ≤ 2‖θ∗‖ holds, where bi is defined in Line 11 of Algorithm 3.

Proof 1 (Proof of Lemma B.2) We start with Equation (8) of (Ghosh et al., 2021b). Reproducing
Equation (8) by substituting T1 = d

√
T e, with probability at-least 1− 8δ1, for all phases i ≥ 2,

bi+1 ≤ ‖θ∗‖+ ip
bi

2
i−1
2 T

1
4

+ iq

√
d

2
i−1
2 T

1
4

, (3)

holds, where p and q are defined in (Ghosh et al., 2021b) as

p =

14 log
(

2K
√
T

δ1

)
√
ρmin

 ,

q =

2Cσ log
(

2K
√
T

δ1

)
√
ρmin

 .
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For all i ≥ 2, i

2
i−1
2
≤ 2. Thus, for all i ≥ 1, Equation (3) can be rewritten as

bi+1 ≤ ‖θ∗‖+
pbi

T
1
4

+
q
√
d

T
1
4

,

≤ ‖θ∗‖+
Cσ
√
d

T
1
4

log

(
K
√
T

δ1

)
bi. (4)

where b1 := 1. We set this initial estimate as 1, since maxi∈{1,··· ,N} ‖θ∗i ‖ ≤ 1. We prove the lemma by
induction that bi ≤ 2‖θ∗‖.

Base case, i = 1 - We know from the initialization (Line 3 of Algorithm 3), that with probability
at-least 1− δs,

b1 ≤ ‖θ∗‖+
√

2σ

√
d

τ
log

(
1

δs

)
,

≤ 2‖θ∗‖.

where τ and δs are defined in Line 2 and input respectively of Algorithm 3.

Induction Step - Assume that for some i ≥ 1, for all 1 ≤ j ≤ i, bj ≤ 2‖θ∗‖. Now, consider case i+ 1.
From recursion in Equation (4), that

bi+1 ≤ ‖θ∗‖+
Cσ
√
d

T
1
4

log

(
K
√
T

δ1

)
bi,

(a)

≤ ‖θ∗‖

(
1 +

2Cσ
√
d

T
1
4

log

(
K
√
T

δ1

))
,

(b)

≤ 2‖θ∗‖.

Step (a) follows from the induction hypothesis. Step (b) follows from the fact that T is large enough such

that 2Cσ
√
d

T
1
4

log
(
K
√
T

δ1

)
≤ 1. This concludes the proof of Lemma.

C Parameter estimation for modified ALB-norm

In this section we show that, similar to the OFUL algorithm of Chatterji et al. (2020), the modified
ALB-norm algorithm described in the previous section, also estimated the underlying parameter while
minimizing regret. We have the following result:

Proposition C.1 Suppose we run the modified ALB-norm algorithm, with underlying parameter Ψ for
T rounds (with the same stochastic context assumptions given in Section 3. The estimate returned by
ALB-norm satisfies

‖Ψ̂−Ψ‖ ≤ O

(√
d

ρminT

)
log(KT /δ) log(dT /δ)),

with probability at least 1− δ.
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Proof 2 As shown in Algorithm 3, the ALB-norm , algorithm works in doubling epochs. At each epoch, it
runs the OFUL algorithm of Chatterji et al. (2020) with a modified norm estimate. Let the doubling epochs
be defined as {T1, . . . , TN , where N is the total number of epochs. Also, the parameter-estimate at the end
of the last epoch is Ψ̂. Since, ALB-norm plays OFUL at the last epoch, we obtain,

‖Ψ̂−Ψ‖ ≤ O

(√
d

ρminTN

)
log(KTN/δ) log(dTN/δ))

with probability at least 1− δ. Now we have TN ≤ T and,

TN + TN−1 + . . .+ T1 = T .

With the doubling epochs, we have

TN + TN/2 + . . . ≥ T
TN (1 + 1/2 + . . .) ≥ T
TN ≥ T /2.

Substituting the above, we have

‖Ψ̂−Ψ‖ ≤ O

(√
d

ρminT

)
log(KT /δ) log(dT /δ))

with probability at least 1− δ, which concludes the proof.

D Shifted OFUL Regret

Here, we establish a relationship between the regret of the standard OFUL algorithm and the shift com-
pensated algorithm. We define the shifted version of OFUL below.

Definition D.1 The OFUL algortihm is used to make a decision of which action to take at time-step t,
given the history of past actions X1, · · · , Xt−1 and observed rewards Y1, · · · , Yt−1. The Γ shifted OFUL is
an algorithm identical to OFUL that describes the action to take at time step t, based on the past actions

X1, · · · , Xt−1 and the observed rewards Ỹ
(Γ)

1 , · · · , Ỹ (Γ)
t−1, where for all 1 ≤ s ≤ t− 1, Ỹs = Ys − 〈Xs,Γ〉.

Definition D.2 For a linear bandit instance with unknown parameter θ∗, and a sequence of (possibly
random) actions X1:T := X1, · · · , XT , denote by RT (X1:T ) :=

∑T
t=1 max1≤j≤K〈βj,t −Xt, θ

∗〉.

Definition D.3 For a linear bandit system with unknown parameter θ∗, and a sequence of (possibly ran-

dom) actions X1:T := X1, · · · , XT , denote by R(Γ)
T (X1:T ) :=

∑T
t=1 max1≤j≤K〈βj,t −Xt, θ

∗ − Γ〉.

Proposition D.4 Suppose for a linear bandit instance with parameter θ∗, an algorithm plays the sequence
of actions X1, · · · , XT , then

RT (X1:T ) ≤ R(Γ)
T (X1:T ) +

T∑
t=1

(
〈Xt − argmax

β∈{β1,t,··· ,βK,t}
〈β, θ∗〉,Γ〉

)
.
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Proof 3 From the definition of R(Γ)
T , we can write the regret as

R(Γ)
T (X1:T ) =

T∑
t=1

max
1≤j≤K

〈βj,t −Xt, θ
∗ + Γ〉,

(a)

≤
T∑
t=1

max
1≤j≤K

〈βj,t, θ∗〉+ 〈β∗t ,Γ〉 − 〈Xt, θ
∗〉 − 〈Xt,Γ〉, (5)

where, β∗t := argmaxβ∈{β1,t,··· ,βK,t}〈β, θ
∗〉. The inequality (a) follows from the following elementary fact.

Lemma D.5 Let X be a compact set, and functions f, g : X → R, such that supx∈X |f(x)| < ∞ and
supx∈X |g(x)| <∞. Then,

max
x∈X

(f(x) + g(x)) ≥ max
x∈X

f(x) + min
x∈X

g(x).

that Rewriting Equation (5), we see that

R(Γ)
T (X1:T ) ≤ RT +

T∑
t=1

〈β∗t −Xt,Γ〉,

and thus the proposition is proved.

Corollary D.6 Suppose for all time t, argmaxβ∈{β1,t,··· ,βK,t}〈β, θ
∗〉 = argmaxβ∈{β1,t,··· ,βK,t}〈β,Γ〉. Then,

RT (X1:T ) ≤ R(Γ)
T (X1:T ).

Proof 4 From the hypothesis of the theorem, we can observe the following,

T∑
t=1

(
〈Xt − argmax

β∈{β1,t,··· ,βK,t}
〈β, θ∗〉,Γ〉

)
=

T∑
t=1

(
〈Xt − argmax

β∈{β1,t,··· ,βK,t}
〈β,Γ〉,Γ〉

)
,

≤ 0.

Plugging the above bound into Proposition D.4 completes the proof.

D.0.1 High Probability Bound on R(Γ)
T

Lemma D.7 Suppose the K context vectors β1, · · · , βK are such that for all i, ||βi|| ≤ 2 and for all i 6= j,
|〈βi − βj , θ∗〉| ≥ 4||θ∗ − Γ||, where θ∗ is the unknown linear bandit parameter and Γ is a fixed vector. Then

argmax
1≤j≤K

〈βj , θ∗i 〉 = argmax
1≤j≤K

〈βj ,Γ〉.

Proof 5 We will prove the following more stronger statement. Let i 6= j ∈ [K] be such that 〈θ∗, βi〉 ≥
〈θ∗, βj〉. Then, under the hypothesis of the proposition statement, we have 〈θ∗, βi−βj〉 ≥ 4||θ∗−Γ||. Thus,
the following chain holds,

〈βi − βj ,Γ〉 = 〈βi − βj , θ∗〉+ 〈βi − βj ,Γ− θ∗〉,
≥ 4||θ∗ − Γ||+ 〈βi − βj ,Γ− θ∗〉,
≥ 4||θ∗ − Γ|| − ||βi − βj ||||Γ− θ∗||,
≥ 0.

The first inequality follows from the hypothesis of the proposition statement, the second follows from Cauchy
Schwartz inequality and the last follows from the fact that ||βi− βj || ≤ 2. Thus, we have shown that under
the hypothesis of the Proposition, the ordering of the coordinates whether by inner product with θ∗ or with
Γ remains unchanged. In particular, the argmax is identical.
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Lemma D.8 Let θ∗ be a fixed vector with ‖θ∗‖ ≤ 1, and Γ ∈ Rd be any arbitrary vector such that
||θ∗ − Γ|| ≤ ψ, for some constant ψ. Let β1, · · · , βK be i.i.d. vectors, supported on [−c/

√
d, c/
√
d]⊗d for a

constant c. Then,

P

[
argmax
1≤j≤K

〈βj , θ∗i 〉 = argmax
1≤j≤K

〈βj ,Γ〉

]
≥
(

1−
(
K

2

)
e−

d
4

(1−8ψ2)2 −Ke−
√
5−1
2

d

)
.

Proof 6 Denote by the Good event E :=
{

argmax1≤j≤K〈βj , θ∗i 〉 = argmax1≤j≤K〈βj ,Γ〉
}

From Lemma

D.7, we know that a sufficient condition for event E to hold is that for all i 6= j, we have

∣∣∣∣〈θ∗, βi − βj〉∣∣∣∣ ≥
2||θ∗ − Γ|| and for all i, ||βi|| < 2. Thus, from a simple union bound, we get

P[Ec] ≤
∑

1≤i<j≤K
P
[∣∣∣∣〈θ∗, βi − βj〉∣∣∣∣ ≤ 4||θ∗ − Γ||

]
+

K∑
i=1

P[||βi|| ≥ 2],

=

(
K

2

)
P
[∣∣∣∣〈θ∗, β1 − β2〉

∣∣∣∣ ≤ 4||θ∗ − Γ||
]

+KP[||β1|| ≥ 2].

The second equality follows from the fact that β1, · · · , βK are i.i.d. Now, since ||θ∗|| ≤ 1, we have from

Cauchy Schwartz that, almost-surely,

∣∣∣∣〈θ∗, β1 − β2〉
∣∣∣∣ ≤ ||β1 − β2||. Thus,

P [|〈θ∗, β1 − β2〉| ≤ 4||θ∗ − Γ||] ≤ P[||β1 − β2|| ≤ 4||θ∗ − Γ||],
≤ P[||β1 − β2|| ≤ 4ψ],

= P[||β1 − β2||2 ≤ 16ψ2],

(a)

≤ e−
c1d
4 ,

where the constant c1 depends on ψ. The first inequality follows from Cauchy Schwartz, and the fact that
||θ∗|| ≤ 1. The last inequality follows from the fact that, E‖β1 − β2‖2 = c2 for a constant c2, and since
{β1, β2} are coordinate-wise bounded, we use standard sub-Gaussian concentration to argue that ‖β1−β2‖2
is close to its expectation. Finally, we obtain that

P
(
‖β1 − β2‖2 − E‖β1 − β2‖2 ≤ −t

)
≤ exp

(
−c3 dt

2
)
.

Choosing t as a constant, we obtain (a).
Finally, we also need to ensure that the context vectors β1, · · · , βK have norms bounded by 2. This can

also be similarly be bounded by the upper tail inequality as

P[||β1|| ≥ 2] = P[d||β1||2 ≥ 4d],

(b)

≤ e−c4d.

for a constant c4, where inequality (b) follows from the upper-tail concentration bound for sub-Gaussian
random variables. Putting this all together concludes the proof.

Lemma D.9 Consider a linear bandit instance with parameter θ∗ with ||θ∗|| ≤ 1 and the context vectors at
each time are sampled uniformly and independently from on a distribution with support [−c/

√
d, c/
√
d]⊗d

for a constant c, i.e., the contexts are i.i.d. across time and arms. Let Γ ∈ Rd be such that ||θ∗ − Γ|| ≤ ψ
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for a constant ψ < 1
2
√

2
, and X1:T = (X1, · · · , XT ) be the set of actions chosen by the Γ shifted OFUL.

Then, with probability at-least
(

1−
(
K
2

)
e−c1d −Ke−c2 d

)
,

RT (X1:T ) ≤ R(Γ)
T (X1:T ),

where the constants c1 and c2 depend on ψ.

Proof 7 This follows by combining Lemma D.8 and D.7.
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