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Abstract

We consider the problem of model selection for the general stochastic contextual bandits
under the realizability assumption. We propose a successive refinement based algorithm
called Adaptive Contextual Bandit (ACB), that works in phases and successively eliminates
model classes that are too simple to fit the given instance. We prove that this algorithm is
adaptive, i.e., the regret rate order-wise matches that of FALCON, the state-of-art contextual
bandit algorithm of Simchi-Levi and Xu (2020), that needs knowledge of the true model
class. The price of not knowing the correct model class is only an additive term contributing
to the second order term in the regret bound. This cost possess the intuitive property that it
becomes smaller as the model class becomes easier to identify, and vice-versa. We then show
that a much simpler explore-then-commit (ETC) style algorithm also obtains a regret rate
of matching that of FALCON, despite not knowing the true model class. However, the cost
of model selection is higher in ETC as opposed to in ACB, as expected. Furthermore, ACB
applied to the linear bandit setting with unknown sparsity, order-wise recovers the model
selection guarantees previously established by algorithms tailored to the linear setting.

1. Introduction

The Contextual Multi Armed Bandit (MAB) problem is a fundamental online learning set-
ting that aims to capture the exploration-exploitation trade-offs associated with sequential
decision making (c.f. Cesa-Bianchi and Lugosi (2006); Chu et al. (2011)). It consists of an
agent, who at each time is shown a context by nature, and subsequently makes an irrevoca-
ble decision from a set of available decisions (arms) and collects a noisy reward depending
on the arm chosen and the observed context. The agent initially has no knowledge of the
rewards of the various actions, and has to learn by repeated interaction over time, the
mapping from the set of context and arms to rewards. The agent’s goal is to minimize
regret —the expected difference between the reward collected by an oracle that knows the
expected rewards of all actions under all possible observed contexts and that of the agent.
The recent books of Lattimore and Szepesvári (2020), Slivkins (2019) and the references
therein provide comprehensive state-of-art on the general bandit problem.

We study the model selection question in general stochastic contextual bandits (c.f.
Agarwal et al. (2014a), Agarwal et al. (2012), Simchi-Levi and Xu (2020), Foster and Rakhlin
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(2020a)) . In this setting, at the beginning of each round t ∈ [T ], nature reveals a con-
text xt ∈ X to an agent, who then subsequently takes an action at ∈ A from a finite
set, and obtains a reward rt. In the stochastic setting (the focus of the present paper),
the set of contexts (xt)

T
t=1 are assumed to be i.i.d. random variables, with an arbitrary

and apriori unknown probability distribution over X . At each time t, conditional on the
context xt and the action taken at, the observed reward rt is independent of everything
else, with the mean E[rt|xt, at] = f∗(xt, at), where f∗ : X × A → [0, 1], is an apriori un-
known function. The agent is given a finite, nested family (Fm)Mm=1 of hypothesis classes1,
where 1 ≤ m1 < m2 ≤ M implies Fm1

⊆ Fm2
. Further, there exists an optimal class

d∗ := inf{1 ≤ m ≤ M : f∗ ∈ Fm}, i.e., Fd∗ is the smallest hypothesis class containing the
unknown reward function f∗. The agent is not aware of d∗ apriori and needs to estimate
it. Model selection guarantees then refers to algorithms for the agent whose regret scales in
the complexity of the smallest hypothesis class (Fd∗ in the above notation) containing the
true model, even though the algorithm was not aware apriori.

In the case when the agent has knowledge that f∗ ∈ F∗
d but does not know f∗, Simchi-Levi and Xu

(2020) recently gave the first computationally efficient algorithm FALCON, that achieves
regret-rate scaling as

√
T . It was shown in Simchi-Levi and Xu (2020), that since g ∈ Fd∗

(i.e., realizable model), the stochastic contextual bandit can be reduced to an offline regres-
sion problem, which can be efficiently solved for many well known function classes (for ex.
the set of all convex functions (Ghosh et al., 2019)). The regret of FALCON was shown to
scale proportional to the square root of the complexity of the function class Fd∗ times T ,
the time horizon. In the case when Fd∗ is a finite set, the complexity equals the logarithm
of the cardinality, while if the class is infinite (either countable or uncountable), complexity
is analogously defined (c.f. Section 5).

The study in this paper is reliant on two assumptions: (i) Realizability (Assumption
1), —the true model belongs to at-least one of the many nested hypothesis classes, and
(ii) Separation (Assumption 2) —the excess risk under any of the plausible model classes
not containing the true model is strictly positive. Realizability, has been a standard as-
sumption in stochastic contextual bandits (Foster et al. (2019), Foster and Rakhlin (2020a),
Simchi-Levi and Xu (2020)), and is used in our setup to define the optimal model class that
needs to be selected. The separation assumption is needed to ensure that not selecting a
relizable model class leads to regret scaling linear in time. The separation assumption is
analogous to that used in standard multi-armed bandits (Lattimore and Szepesvári, 2020),
where the mean reward of the best arm is strictly larger than that of the second best arm.

In parallel independent work, Krishnamurthy and Athey (2021) also study model selec-
tion problem, under the same assumptions of realizability and separation that we make.
They propose ModIGW algorithm that is built on FALCON and shares similarity to our algo-
rithm ACB; both algorithms run in epochs of doubling length, where at the beginning of
each epoch, an appropriate model class is selected, and the rest of the epoch consists of
playing FALCON on the selected model class. In order to select the appropriate class, the
nested structure of model classes along with the fact that the largest class M is realizable by
definition is used. The regret guarantees are similar for both ACB and ModIGW, with ModIGW

having a better second order term, as they have a stronger assumption on the regression

1. We use the term hypothesis class and model class interchangebly
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oracle. Remark 5 highlights that under the same assumption on the regression oracle, the
second order term of ACB will match (order-wise) that of ModIGW. The ACB Algorithm and its
analysis can be viewed as a meta-algorithm, that uses FALCON, the state-of-art contextual
bandit algorithm as a black-box to yield model selection guarantees. Thus any improvement
to the contextual bandit problem, automatically yields a model selection result through ACB.

1.1 Our Contributions

We classify our contributions into three.

1. A Successive Refinement Algorithm for General Contextual Bandit - We
present Adaptive Contextual Bandit (ACB) that matches (order-wise), the regret rate of
FALCON (Simchi-Levi and Xu (2020)), the state of art algorithm in contextual bandits which
assumes knowledge of the true model class. ACB proceeds in epochs, with the first step in
every epoch being a statistical test on the samples from the previous epoch to identify
the smallest model class, followed by FALCON on this identified class in the epoch. We show
that, with probability 1, eventually, ACB identifies the true model class (Lemma 1), and thus
its regret rate matches that of FALCON. ACB can be viewed as a meta-algorithm, that uses
FALCON, the state-of-art contextual bandit algorithm as a black-box. Thus any improvement
to the contextual bandit problem, automatically yields a model selection result through ACB.

Cost of model selection: The second order regret term in ACB scales as O
(
log(T )
∆2

)
,

where ∆ > 0, is the gap (formally defined in Assumption 2) between the smallest class
containing the true model and the highest model class not containing the true model. This
term can be interpreted as the cost of model selection. Furthermore, as this term is inversely
proportional to the gap ∆, we see that an ‘easier’ instance (∆ being high), incurs lower cost
of model selection than an instance with smaller ∆. Furthermore, the model selection cost

can be reduced to O
(
log log T

∆2

)
if T is known in advance.

2. An Explore-then-commit (ETC) algorithm, also achieves model selection,
but has a larger second order regret compared to ACB . We show that a ETC
algorithm also performs model selection, i.e., has a regret rate scaling as that of FALCON on
the optimal model class. However, the cost of model selection in ETC is O( log(T )

∆4 ), which
is larger than that of ACB. Nevertheless, asymptotically, a simple ETC algorithm suffices to
obtain model selection.

3. Improved Regret Guarantee with Linear Structure—In the special setup of
stochastic linear bandits, where the reward is a linear map of the context, we propose and
analyze an adaptive algorithm, namely Adaptive Linear Bandits-Dimension (ALB-Dim). We
show that the regret of ALB-Dim is independent of the number of actions (arms), which is
an improvement over the regret of ACB. Furthermore, we show that, when ACB is applied in
the linear bandit setting where each hypothesis classes specifies the sparsity of the linear
bandit parameter, the regret guarantee matches order-wise, upto a

√
|A| factor to that of

ALB-Dim. On the other hand, ALB-Dim provides model selection guarantees even when the
number of actions (arms) is infinite.

Motivating Example: Model selection in contextual bandits plays a key role in appli-
cations such as personalized recommendation systems, which we sketch. Consider a system

3
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(such as news recommendation) that on each day, recommends one out of K possible outlets
to a user. On each day, an event is realized in nature, which can be modeled as the context
vector on that day. The true model function f∗ encodes the user’s preference; for example
the user prefers one outlet for sports oriented articles, while another for international events.
This apriori unknown to the system and needs to learn this through repeated interactions.
The multiple nested hypothesis classes corresponds to a variety of possible neural network
architectures to learn the mapping from contexts (event of the day) to rewards (which can be
engagement with the recommended item). In practice, these nested hypothesis classes range
from simple logistic regression to multi-layer perceptrons (Cheng et al., 2016). Complex
network architectures although has the potential for increased accuracy, incurs undesirable
overheads such as requiring larger offline training to deliver accuracy gains (Cheng et al.,
2016), computational complexity in hyper-parameter tuning (Caselles-Dupré et al., 2018)
and challenges of explainability in predictions (McInerney et al., 2018; Balog et al., 2019).
Model selection provides a framework to trade-off between accuracy and the overheads.

2. Related Work

Model selection for MAB have received increased attention in recent times owing to its
applicability in a variety of large-scale settings such as recommendation systems and per-
sonalization. The special case of linear contextual bandits was studied in Chatterji et al.
(2019), Ghosh et al. (2021) and Foster et al. (2019), where both instance dependent and
instance independent algorithms achieving model selection were given. In this linear bandit
framework, similar to the present paper, Foster et al. (2019) and Ghosh et al. (2021) con-
sidered the family of nested hypothesis classes, with each class positing the sparsity of the
unknown linear bandit parameter. In this setup, Foster et al. (2019) proposed ModCB which
achieves regret rate uniformly for all instances, a rate that is sub-optimal compared to the
oracle that knows the true sparsity. In contrast, both our paper and Ghosh et al. (2021)
propose an algorithm that achieves regret rate matching that of the oracle that knows the
true sparsity. The cost of model selection contributes only a constant that depends on the
instance but independent of the time horizon. However, unlike ModCB, our regret guaran-
tees are problem dependent and do not hold uniformly for all instances. A parallel line of
work on linear bandits has focused on simple LASSO type algorithms under strong stochas-
tic assumptions on the distribution of the contexts that achieve model selection guarantees
(Bastani and Bayati, 2020a; Bastani et al., 2021; Oh et al., 2020; Ariu et al., 2020; Li et al.,
2021).

A black-box model selection framework for MABs called Corralwas proposed in Agarwal et al.
(2017), where the optimal algorithm for each hypothesis class is treated as an expert and the
task of the forecaster is to have low regret with respect to the best expert (best model class).
The generality of this framework has rendered it fruitful in a variety of different settings; for
example Agarwal et al. (2017); Arora et al. (2021) considered unstructured MABs, which
was then extended to both linear and contextual bandits and linear reinforcement learning
in a series of works (Pacchiano et al., 2020a,b) and lately to even reinforcement learning
Lee et al. (2021). However, the price for this versatility is that the regret rates the cost of
model selection is multiplicative rather than additive. In particular, for the special case of
linear bandits and linear reinforcement learning, the regret scales as

√
T in time with an
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additional multiplicative factor of
√
M , while the regret scaling with time is strictly larger

than
√
T in the general contextual bandit.

Adaptive algorithms for linear bandits have also been studied in different contexts from
ours. The papers of Locatelli and Carpentier (2018); Krishnamurthy et al. (2018) consider
problems where the arms have an unknown structure, and propose algorithms adapting to
this structure to yield low regret. The paper Lykouris et al. (2017) proposes an algorithm
in the adversarial bandit setup that adapt to an unknown structure in the adversary’s loss
sequence, to obtain low regret. The paper of Auer et al. (2018) consider adaptive algo-
rithms, when the distribution changes over time. In the context of online learning with
full feedback, there have been several works addressing model selection (Luo and Schapire,
2015; McMahan and Abernethy, 2013; Orabona, 2014; Cutkosky and Boahen, 2017). In
the context of statistical learning, model selection has a long line of work (for eg. Vapnik
(2006), Birgé et al. (1998), Lugosi et al. (1999), Arlot et al. (2011), Cherkassky (2002)
Devroye et al. (2013)). However, the bandit feedback in our setups is much more challeng-
ing and a straightforward adaptation of algorithms developed for either statistical learning
or full information to the setting with bandit feedback is not feasible.

Notation: Throughout the paper, we use C,C1, C2, . . . , c, c1, c2, . . . to denote universal
positive constants, the value of which may change from instance to instance. Also, for a
positive integer r, we denote the set {1, 2, . . . , r} by the shorthand [r]. Also, a . b means
a ≤ Cb for a universal constant C. Similarly a & b implies a ≥ Cb for a positive constant C.
Also, ‖.‖ denotes ℓ2 norm of a vector unless otherwise specified. For a symmetric matrix A,
we denote the maximum and minimum eigenvalues as λmax(A) and λmin(A) respectively.

3. Problem Setup

3.1 Preliminaries

Setup: Let A be the set of K actions, and let X ⊆ R
d be the set of d dimensional

contexts. At time t, nature picks (xt, rt) in an i.i.d fashion, where xt ∈ X and a context
dependent rt ∈ [0, 1]K . All expectation operators in this section are with respect to this
i.i.d. sequence (x, r). Upon observing the context, the agent takes action at ∈ A, and
obtains the reward of rt(at). Note that, the reward rt(at, xt) depends on the context xt
and the action at. Furthermore, it is standard (Foster et al. (2019); Simchi-Levi and Xu
(2020)) to have a realizibility assumption on the conditional expectation of the reward, i.e.,
there exists a predictor f∗ ∈ F , such that E[rt(a, x)|x, a] = f∗(x, a), for all x and a. We
suppress the dependence of the reward on the context xt and denote the reward at time t
from action a ∈ A as rt(a).

In the contextual bandit literature (Agarwal et al. (2012); Simchi-Levi and Xu (2020)) it
is generally assumed that the true regression function f∗ is unknown, but the function class
F where it belongs, is known to the learner. The price of not knowing f∗ is characterized
by regret, which we define now. To set up notation, for any f ∈ F , we define a policy
induced by the function f , πf : X → A as πf (x) = argmina∈Af(x, a)

2, for all x ∈ X . We

2. Ties are broken arbitrarily, for example the lexicographic ordering of A
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define the regret over T rounds as the following:

R(T ) =

T∑

t=1

[rt(πf∗(xt))− rt(at)].

4. Model Selection for General Contextual Bandits

In this section, we focus on the main contribution of the paper—a provable model selection
guarantee for the (generic) stochastic contextual bandit problem. In contrast to the stan-
dard setting, in the model selection framework, we do not know F . Instead, we are given
a nested class of M function classes, F1 ⊂ F2 ⊂ . . . ⊂ FM . Let the smallest function class
where the true regressor, f∗ lies be denoted by Fd∗ , where d∗ ∈ [M ].

From the above discussion, since f∗ ∈ Fd∗ , the regret of an adaptive contextual bandit
algorithm should depend on the function class Fd∗ . However, we do not know d∗, and our
goal is to propose adaptive algorithms such that the regret depends on the actual problem
complexity Fd∗ . First, let us write the realizability assumption with the nested function
classes.

Assumption 1 (Realizability). There exists 1 ≤ d∗ ≤ M , and a predictor f∗ ∈ Fd∗, such
that E[rt(a)|x] = f∗(x, a), for all x and a.

Furthermore, in order to identify the correct model class within the given M hypothesis
classes, we also require the following separability condition. Note that similar separability
condition is also witnessed in Krishnamurthy and Athey (2021).

Assumption 2. There exists a ∆ > 0, such that,

inf
f∈Fd∗−1

inf
a∈A

E[f(x, a)− f∗(x, a)]2 ≥ ∆.

The parameter ∆ > 0 is the minimum separation across the function classes. The expecta-
tion above is with respect to the distribution by which the contexts are selected.

The above condition implies that there is a (non-zero) gap, between the regressor func-
tions belonging to the realizable classes and non-realizable classes. Since, we have nested
structure, F1 ⊂ F2 ⊂ . . . ⊂ FM , condition on the biggest non-realizable class, Fd∗−1 is suf-
ficient. Note that separability condition is quite standard in statistics, specially in the area
of clustering (Lu and Zhou (2016)), analysis of Expectation Maximization (EM) algorithm
(Kwon and Caramanis (2020); Balakrishnan et al. (2017), understanding the behavior of
Alternating Minimization (AM) algorithms (Yi et al. (2016); Ghosh et al. (2019)). Model
selection without separability condition is kept as an interesting future work. Note that
although we require the gap assumption for theoretical analysis, our algorithm (described
next) does not require any knowledge of ∆.

4.1 Algorithm—Adaptive Contextual Bandits (ACB)

In this section, we provide a novel model selection algorithm that use successive refinements
over epochs. We use a provable contextual bandit algorithm, namely FALCON (stands for

6



Model selection for generic contextual bandits

FAst Least-squares-regression-oracle CONtextual bandits) of Simchi-Levi and Xu (2020),
as a baseline, and add a model selection phase at the beginning of each epoch. In other
words, over multiple epochs, we successively refine our estimates of the proper model class
where the true regressor function f∗ lies. The details are provided in Algorithm 1. Note
that ACB does not require any knowledge of the separation ∆. We first briefly discuss the
FALCON algorithm.

The Base Algorithm: Recently, Simchi-Levi and Xu (2020) proposed and analyzed a
contextual bandit algorithm, FALCON, which gives provable guarantees for contextual ban-
dits beyond linear structure. FALCON is an epoch based algorithm, and depends only on
an offline regression oracle, which outputs an estimate f̂ of the regression function f∗ at
the beginning of each epoch. FALCON then uses a randomization scheme, that depends
on the inverse gap with respect to the estimate of the best action. Suppose that the true
regressor f∗ ∈ F , and the realizibility condition (Assumption 1) holds. With a proper
choice of learning rate, with probability 1− δ, FALCON yields a regret of

R(T ) ≤ O(
√

KT log(|F|T/δ)).

Although the above result makes sense only for the finite F , an extension to the infinite F
is possible and was addressed in the same paper (see Simchi-Levi and Xu (2020)).

Our Approach: We use successive refinement based model selection strategy along with
the base algorithm FALCON. The details of our algorithm, namely Adaptive Contextual
Bandits (ACB) are given in Algorithm 1. We break the time horizon into several epochs with
doubling epoch length. Let τ0, τ1, . . . be epoch instances, with τ0 = 0, and τm = 2m. Before
the beginning of the m-th epoch, using all the data of the m− 1-th epoch, we add a model
selection module, as shown in Algorithm 1 (lines 4-8).

Note that, in ACB, we feed the samples of the m − 1-th epoch to the offline regression
oracle. Moreover, we split the samples in 2 equal halves. We use the first half to compute
the regression estimate

f̂m
j = argminf∈Fj

τm−1/2∑

t=τm−2+1

(f(xt, at)− rt(at))
2

via offline regression oracle, for all m ∈ [M ]. ACB then use the rest of the samples to
construct the test statistics given by,

Sm
j =

1

2m−2

τm−1∑

t=τm−1/2+1

(f̂m
j (xt, at)− rt(at))

2

for all m ∈ [M ]. We do not use the same set of samples to remove any dependence issues
with f̂m

j and the samples {xt, at, rt(at)}τm−1

t=τm−1/2+1.

ACB then compares the test statistics {Sm
j }Mm=1 in Line 8 of Algorithm 1 to pick the

model class. Intuitively, we expect Sm
j to be small for all hypothesis classes that contain

f∗
d∗ . Otherwise, thanks to the separation condition in Assumption 2, we expect Sm

j to be
large. Realizability, i.e., Assumption 1 ensures that FM , the largest hypothesis class by
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Algorithm 1: Adaptive Cotextual Bandits (ACB)

1: Input: epochs 0 = τ0 < τ1 < τ2 < . . ., confidence parameter δ, Function classes
F1 ⊂ F2 ⊂ . . . ⊂ FM

2: for epoch m = 1, 2, . . . , do
3: δm = δ/2m

4: for function classes j = 1, 2, . . . ,M do

5: Compute f̂m
j = argminf∈Fj

∑τm−1/2
t=τm−2+1(f(xt, at)− rt(at))

2 via offline regression
oracle

6: Construct Sm
j = 1

2m−2

∑τm−1

t=τm−1/2+1(f̂
m
j (xt, at)− rt(at))

2

7: end for
8: Model Selection: Find the minimum index ℓ ∈ [M ] such that Sm

j ≤ Sm
M +

√
m

2m/2 .
Let this class be denoted by Fm

ℓ

9: Set learning rate ρm = (1/30)
√

K(τm−1 − τm−2)/ log(|Fm
ℓ |(τm−1 − τm−2)m/δm)

10: for round t = τm−1 + 1, . . . , τm do
11: Observe context xt ∈ X
12: Compute f̂m

ℓ (a) for all action a ∈ A, set ât = argmaxa∈Af̂
m
ℓ (a)

13: Define pt(a) =
1

K+ρm(f̂m
ℓ (xt,ât)−f̂m

ℓ (xt,a)
∀a 6= ât, pt(ât) = 1−∑a6=ât

pt(a).

14: Sample at ∼ pt(.) and observe reward rt(at).
15: end for
16: end for

definition contains the true model f∗. Thus Sm
M serves as an estimate of how small the

excess risk of any realizable class must be. We set the threshold to be a small addition to
Sm
M . The additional term of

√
m
2m in Line 8 of Algorithm 1 is chosen so that it is not too

small, but nevertheless goes to 0, as m→∞. In particular, we choose the threshold in ACB

such that it is large enough to ensure all realizable classes have excess risk smaller than this
threshold, but also not so large that it exceeds the excess risk of the non-realizable classes.

Let Fm
ℓ be function class selected by this procedure in epoch m. ACB now uses in-

verse gap randomization with properly chosen learning rate (see Simchi-Levi and Xu (2020);
Foster and Rakhlin (2020b); Sen et al. (2021)) to select the action at. In particular, with
f̂m
ℓ as the regressor function, let ât = argmaxa∈Af̂

m
ℓ (a) be the greedy action. The inverse

gap randomization pt(.) is defined in the following way:

pt(a) =
1

K + ρm(f̂m
ℓ (xt, ât)− f̂m

ℓ (xt, a)
∀a 6= ât, pt(ât) = 1−

∑

a6=ât

pt(a),

where K is the number of arms (actions) and ρm is the learning rate. Finally, we sample
action at ∼ pt(.) and henceforth observe reward rt(at).

4.2 Analysis of ACB

We now analyze the performance of the model selection procedure of Algorithm 1. We have
the doubling epochs, i.e., τm = 2m. Without loss of generality, we simply assume τ1 = 2.
Also, assume that we are at the beginning of epoch m, and hence we have the samples from
epoch m − 1. So, we have total of 2m−1 samples, out of which, we use 2m−2 to construct
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the regression functions and the rest 2m−2 to obtain the testing function Sm
j . Furthermore,

we want the model selection procedure to succeed with probability at least 1− δ/2m, since
the we want a guarantee that holds for all m, and a simple application of the union bound
yields that.

We first show that ACB identifies the correct function class with high probability after a
few epochs. We have the following Lemma.

Lemma 1 (Model Selection of ACB). Suppose Assumptions 1 and 2 holds and we run
Algorithm 1. Then, in all phases m such that

2m & max{ log T
∆2

, log(|FM |), log(1/δ)}

Algorithm 1 identifies the correct model class Fd∗ in Line 8, with probability exceeding
1− 2Mδ.

Proof sketch. In order select the correct function class, we first obtain upper bounds on

the test statistics S
(m)
j for model classes that includes the true regressor f∗

d∗ . We accomplish

this by first carefully bounding the expectation of S
(m)
j and then using concentration. We

then obtain a lower bound on S
(m)
j for model classes not containing f∗

d∗ via leveraging
Assumption 2 (separability) along with Assumption 1. Combining the above two bounds
yields the desired result.

Regret Guarantee: With the above lemma, we obtain the following regret bound for
Algorithm 1.

Theorem 1. Suppose the conditions of Lemma 1 hold. Then with probability at least
1− 2Mδ − δ, running Algorithm 1 for T iterations yield

R(T ) ≤ C max{ log T
∆2

, log(|FM |), log(1/δ)} +O
(√

KT log(|Fd∗ |T/δ)
)
.

Several remarks are in order:

Remark 1. The first term of the regret scales weakly with T (as O(log T )). Hence, the
regret scaling (with respect to T ) is Õ(

√
KT log(|Fd∗ |T/δ), with high probability, which

matches (upto a log factor) the regret of an oracle knowing the true function class Fd∗.

Remark 2. The first term can be interpreted as the cost of model selection. Hence, the

model selection procedure only adds a O
(
log T
∆2

)
term (minor term compared to the

√
T

scaling) to the regret.

Remark 3. Algorithm 1 is parameter-free, i.e., does not need knowledge of ∆. Nevertheless,
the regret guarantee adapts to the problem hardness, i.e., if ∆ is small, the regret is larger
and vice-versa.

9
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Remark 4 (Improvement from O(log T ) to O(log log T ) in the model selection cost). We
emphasize that the O(log T ) factor in the cost of model selection term can be improved, if
we have the knowledge of T apriori. In that setting, instead of substituting δm = δ/2m,
we substitute δm = δ/ log T for all phases m. Since the doubling epoch ensures a total of
O(log T ) epochs, this choice of δm indeed works with a regret of

R(T ) ≤ Cmax{ 1

∆2
, log(|FM |), log(log T/δ)} +O(

√
KT log(|Fd∗ |T log T/δ),

with probability at least 1− 2Mδ − δ.

Remark 5. The cost of model selection in Theorem 1, depends on the complexity of the
largest model class FM . Under a stronger assumption on the regression oracle used in Line
5 of Algorithm 1 (for example Assumption 5 of Krishnamurthy and Athey (2021)), then the
cost of model selection only depends on Fd∗ as opposed to FM .

4.3 A Simple Explore-Then-Commit (ETC) Algorithm for Model Selection

In the previous section, we analyze ACB, which was successively estimates the function class
over epochs and use FALCON as a base algorithm. In this section, instead, we use a simple
Explore-Then-Commit (ETC) algorithm for selecting the correct function class, and then
commit to it during the exploitation phase. After a round of exploration, we do a (one-time)
threshold based testing to estimate the function class, and after that, exploit the estimated
function class for the rest of the iterations. We show that this simple strategy finds the
optimal function class Fd∗ with high probability. The details are given in Algorithm 2. We
now explain the exploration and exploitation phases of this algorithm.

For the first 2
√
T time epochs, we do the exploration (i.e., sample randomly). Precisely,

the context-reward pair (xt, rt) is being sampled by nature in an i.i.d fashion, and the action
the agent takes is chosen uniformly at random from the action set A. In particular, the
action is chose independent of the context xt. Hence, this is a pure exploration strategy.

Based on the samples of the first
√
T rounds, we estimate the regression function

{f̂j}Mj=1 for all the (hypothesis) function classes F1, . . . ,FM via offline regression oracle

(see Simchi-Levi and Xu (2020)) and obtain f̂j = argminf∈Fj
(
∑√

T
t=1 f(xt, at) − rt(at))

2 for
all j ∈ [M ].

To remove dependence issues, we use the remaining
√
T samples obtained form the

sampling phase. Here we actually compute the following test statistic for all hypothesis

classes, namely Sj = 1√
T

∑√
T

t=1(f̂j(xt, at) − rt(at))
2for all j ∈ [M ]. We then perform a

thresholding on {Sj}Mj=1. We pick the smallest index j such that Sj ≤ SM +
√

log(T )√
T

. We

then commit to this function class for the rest T − 2
√
T time steps. Hence, in Algorithm 2,

we perform one step thresholding and commit to it. We show that simple scheme obtains
the correct model with high probability.

4.4 Regret Guarantee of ETC

Here, we analyze Algorithm 2 with large gap assumption. We have the following lemma on
model selection with ETC:

10
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Algorithm 2: ETC for model selection for contextual bandits

1: Input: Function classes F1 ⊂ F2 ⊂ . . . ⊂ FM , time horizon T , confidence parameter δ
2: Explore:
3: for t = 1, 2, . . . , ⌈

√
T ⌉ do

4: Observe context reward pair (xt, rt)
5: Select action at uniformly at random from A, independent of xt
6: Observe reward rt(at)
7: end for
8: Compute regression estimator f̂j = argminf∈Fj

1√
T

∑⌈
√
T⌉

t=1 [f(xt, at)− rt(at)]
2 (via

offline regression oracle) for all j ∈ [M ]
9: Model Selection test:

10: Obtain another set of ⌈
√
T ⌉ fresh samples of (xt, rt, at) via pure exploration (similar to

line 4-6 )

11: Construct the test statistic Sj =
1

⌈
√
T⌉
∑⌈

√
T ⌉

t=1 (f̂j(xt, at)− rt(at))
2 for all j ∈ [M ]

12: Thresholding: Find the minimum index ℓ ∈ [M ] such that Sj ≤ SM +
√

log T√
T
. We

obtain the regressor f̂ℓ ∈ Fℓ

13: Commit:
14: for t = 2⌈

√
T ⌉+ 1, . . . , T do

15: Observe context reward pair (xt, rt)
16: Select action at according to inverse gap randomization of Algorithm 1 (lines 9-15)

with the function class Fℓ and observe reward rt(at)
17: end for

Lemma 2 (Model Selection for ETC). Suppose the time horizon satisfies

T & (log T )max
(
log
(√

T |FM |
)
,∆−4, log(1/δ)

)
.

Then with probability at least 1 − 4Mδ, line 11 in Algorithm 2 identifies the correct model
class Fd∗ .

We now analyze the regret performance of Algorithm 2. The regret R(T ) is comprised
of 2 stages; (a) exploration and (b) commit (exploitation). We have the following result.

Theorem 2. Suppose Assumptions 2 and 3 hold. Then with probability at least 1−4Mδ−δ,
running Algorithm 2 for T iterations yield

R(T ) ≤ C (log T )max
(
log
(√

T |FM |
)
,∆−4, log(1/δ)

)
+O

(√
KT log(|Fd∗ |T/δ)

)
.

Remark 6. Asymptotically in time, ETC matches the guarantee of an oracle which knows
the true model class apriori.

Remark 7. The cost of running the simpler ETC algorithm is a worse dependence on the
additive constant which scales as log(T )

∆4 as opposed to log(T )
∆2 in Algorithm 1. This shows that

although asymptotically Algorithms 1 and 2 have identical scaling, the regret guarantee of
Algorithm 1 is better, as expected.

11
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5. General Contextual Bandits with Infinite Function Classes

The results in Section 4 hold for finite function classes, since the regret bound depends on
the cardinality of the function class. However, as shown in Simchi-Levi and Xu (2020), it
can be easily extended to the infinite function class setting. Exploiting the notion of the
complexity of infinite function classes, this reduction is done.

Like before, we consider a nested sequence of M function classes F1 ⊂ . . . ⊂ FM . The
reward is sampled from an unknown function f∗

d∗ lying in the (smallest) function class
indexed by d∗ ∈ [M ], which is unknown. Given the function classes, our job is to find the
function class Fd∗ , and subsequently exploit the class to obtain sub-linear regret. Let us
first rewrite the separability assumption.

We assume that the function classes F1 ⊂ . . . ⊂ FM are compact. This, in conjunction
with the extreme value theorem, it is ensured that the following minimizers exist: for j < d∗,
we define

f̄j = arginff∈Fj
Ex,a[f(x, a)− f∗

d∗(x, a)]
2

for all pairs (x, a). For j ≥ d∗, we know that this minimizer is indeed f∗
d∗ . This comes

directly from the realizibility assumption. Note that we require the existence of the mini-
mizer (regression function) in order to use it for selecting actions in the contextual bandit
framework (see Simchi-Levi and Xu (2020))

Having defined the minimizers, we rewrite the separability assumption as following:

Assumption 3. For any f̄j, where j < d∗, we have

Ex,a[f̄j(x, a) − f∗
d∗(x, a)]

2 ≥ ∆,

for all pairs (x, a) ∈ X ×A.

Similar to Simchi-Levi and Xu (2020), here, we are not worried about the explicit form
of the regression functions f̄j. Rather, we assume the following performance guarantee of
the offline regressor. For j ≥ d∗ (meaning, the class containing the true regressor f∗

d∗), we
have the following assumption.

Assumption 4. Given n i.i.d data samples (x1, a1, r1(a1)), (x2, a2, r2(a2)), . . . , (xn, an, rn(an)),
the offline regression oracle returns a function f̂j, such that for δ > 0, with probability at
least 1− δ,

Ex,a[f̂j(x, a)− f∗
d∗(x, a)]

2 ≤ ξFj ,δ(n)

This assumption is taken from (Simchi-Levi and Xu, 2020, Assumption 2). As discussed
in the above-mentioned paper, the quantity ξ(.,.)(n) is a decreasing function of n, e.g.,

ξ(.,.)(n) = Õ(1/n). As an instance, consider the class of all linear regressors in R
d. In that

case, ξ(.,.)(n) ∼ Õ(d/n). For function classes with finite VC dimension (or related quantities

like VC-sub graph or fat-shattering dimension; pseudo dimension in general, denoted by d̃),
we have ξ(.,.)(n) ∼ Õ(d̃/n).

Here, to avoid repetition, we do not present all our previous results in the infinite function
class setting. We consider two instances:

12
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1. The adaptive contextual bandit (ACB) algorithm ( Algorithm 1).

2. The ETC algorithm ( Algorithm 2).

The model-selection algorithm remains more-or-less the same overall.
For Option I, we collect all the samples from the previous epoch of the FALCON algo-

rithm, split the samples, to obtain the regression estimate f̂m
j and similarly construct test

statistic Sm
j for all j ∈ [M ]. In this setting, for the m-th epoch, with model chosen as Fℓ, we

set the learning rate (similar to the FALCON+ algorithm of Simchi-Levi and Xu (2020))
as

ρm = (1/30)
√

K/ξFm
ℓ ,δ/2m2(τm−1 − τm−2).

For Option II, we explore for the first 2
√
T rounds. The first

√
T rounds are used to

collect samples (xt, rt, at) via pure exploration. Feeding this samples to the offline regres-
sion oracle, and focusing on the individual function classes {Fj}Mj=1 separately, we obtain

(f̂j, ξFj ,δ(
√
T )) for all j ∈ [M ]. Thereafter, we perform another round of pure exploration,

and obtain
√
T fresh samples. Like in the finite case, we construct statistic Sj for all j ∈ [M ].

Similar to Algorithms 1 and 2, we choose the correct model based on a threshold on the
test statistic Sm

j (for Option II, it is Sj) and the threshold in phase m is γm := Sm
M

√
m
2m

( γ := SM +
√

log T√
T

for Option II). We show that for all sufficiently large phase numbers,

for all j ≥ d∗, Sm
j ≤ γm, and for all j < d∗, Sm

j > γm with high probability. Once this
is shown, the model selection procedure follows exactly as Algorithm 2, i.e., we find the
smallest index ℓ ∈ [M ], for which Sℓ ≤ γm. With high probability, we show that ℓ = d∗.

Regret Guarantee We first show the guarantees for Option I, and Option II.

Theorem 3. (ACB with infinite function classes) Suppose Assumptions 1, 3 and 4 hold.
Then, with probability at least 1− 2Mδ − δ, running Algorithm 1 for T iterations yield

R(T ) ≤ C(log T )max{max
m

2m/2 ξFM ,1/2m/2(2m−2), log(1/δ),∆−2}+O
(√

KξFd∗ ,δ/2T (T )T
)
.

Theorem 4. (ETC with infinite function classes) Suppose Assumptions 1, 3 and 4 hold.
Then, provided,

T & (log T )max
(
T 1/4ξFM ,(1/T 1/4),∆

−4, log(1/δ)
)
,

with probability at least 1 − 4Mδ, line 11 in Algorithm 2 identifies the correct model class
Fd∗ . Furthermore, running Algorithm 2 for T iterations yields, with probability at least
1− 2Mδ − δ, the regret

R(T ) ≤ (log T )max
(
T 1/4ξFM ,(1/T 1/4),∆

−4, log(1/δ)
)
+O

(√
KξFd∗ ,δ/2T

(T ) T
)
.

Remark 8. In both the settings, we match the regret of an oracle knowing the correct
function class. We pay a small price for model selection.

Remark 9. The proof of these theorems parallels exactly similar to the finite function class
setting. The only difference is that instead of upper-bounding the prediction error using
Agarwal et al. (2012), we use the the definition of ξ(.) to accomplish this.
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6. Model Selection in Stochastic Linear Bandits

In the previous sections, we consider the problem of model selection for general contextual
bandits. Moreover, we assumed that the function classes are separable, and leveraging
that we have several provable model selection algorithms. In this section, we consider a
special case of model selection for stochastic linear bandits. We observe that with this
linear structure, assumption like separability across function classes is not required.

In the linear bandit settings, we consider 2 different setup—(a) continuum (infinite) arm
setting and (b) finite arm setting. We first start with the continuum arm setup.

6.1 Model Selection for Continuum (infinite) Arm Stochastic Linear bandits

6.1.1 Setup

We consider the standard stochastic linear bandit model in d dimensions (see Abbasi-Yadkori et al.
(2011)), with the dimension as a measure of complexity. The setup comprises of a contin-
uum collection of arms denoted by the set A := {x ∈ R

d : ‖x‖ ≤ 1}3 Thus, the mean reward
from any arm x ∈ A is 〈x, θ∗〉, where ‖θ∗‖ ≤ 1. We assume that θ∗ is d∗ ≤ d sparse, where
d∗ is apriori unknown to the algorithm. For each time t ∈ [T ], if an algorithm chooses an
arm xt ∈ A, the observed reward is denoted by yt := 〈xt, θ∗〉+ ηt, where {ηt}t≥1 is an i.i.d.
sequence of 0 mean sub-gaussian random variables with known parameter σ2.

We consider a sequence of d nested hypothesis classes, where each hypothesis class i ≤ d,
models θ∗ as a i sparse vector. The goal of the forecaster is to minimize the regret, namely

R(T ) =

T∑

t=1

[〈x∗t − xt, θ
∗〉] ,

where at any time t, xt is the action recommended by an algorithm and x∗t = argmaxx∈A〈x, θ∗〉.
The regret R(T ) measures the loss in reward of the forecaster with that of an oracle that
knows θ∗ and thus can compute x∗t at each time.

Note that, we assume that the true complexity (dimension) d∗ ≤ d is initially unknown,
and we seek algorithms that adapts to this unknown true dimension, rather than assume
that the problem is d dimensional. This is in contrast to both the standard linear bandit
setup (Chu et al., 2011; Abbasi-Yadkori et al., 2011), where there is no notion of complexity,
as well as the line of work on sparse linear bandits (Bastani and Bayati, 2020b), where the
the true sparsity (dimension) is known, but only the set of which of the d∗ out of the d
coordinates is non-zero is unknown.

6.1.2 Algorithm: Adaptive Linear Bandits (Dimension) [ALB-Dim]

We present our adaptive scheme in Algorithm 3. The algorithm is parametrized by T0 ∈ N,
which is given in Equation (1) in the sequel and slack δ ∈ (0, 1). ALB-Dim proceeds in
phases numbered 0, 1, · · · which are non-decreasing with time. At the beginning of each
phase, ALB-Dim makes an estimate of the set of non-zero coordinates of θ∗, which is kept
fixed throughout the phase. Concretely, each phase i is divided into two blocks:

3. Our algorithm can be applied to any compact set A ⊂ R
d, including the finite set as shown in Appendix

C.
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Algorithm 3: Adaptive Linear Bandit (Dimension)

1: Input: Initial Phase length T0 and slack δ > 0.
2: θ̂0 = 1, T−1 = 0
3: for Each epoch i ∈ {0, 1, 2, · · · } do
4: Ti = 36iT0, εi ← 1

2i
, δi ← δ

2i

5: Di := {i : |θ̂i| ≥ εi
2 }

6: for Times t ∈ {Ti−1 + 1, · · · , Ti} do
7: Play OFUL(1, δi) only restricted to coordinates in Di. Here δi is the probability

slack parameter and 1 represents ‖θ∗‖ ≤ 1.
8: end for
9: for Times t ∈ {Ti + 1, · · · , Ti + 6i

√
T0} do

10: Play an arm from the action set A chosen uniformly and independently at
random.

11: end for
12: αi ∈ R

Si×d with each row being the arm played during all random explorations in
the past.

13: yi ∈ R
Si with i-th entry being the observed reward at the i-th random exploration

in the past
14: θ̂i+1 ← (αT

i αi)
−1

αiyi, is a d dimensional vector
15: end for

1. a regret minimization block lasting 36iT0 time slots4,

2. followed by a random exploration phase lasting 6i⌈√T0⌉ time slots.

Thus, each phase i lasts for a total of 36iT0 +6i⌈
√
T0⌉ time slots. At the beginning of each

phase i ≥ 0, Di ⊆ [d] denotes the set of ‘active coordinates’, namely the estimate of the
non-zero coordinates of θ∗. By notation, D0 = [d] and at the start of phase 0, the algorithm
assumes that θ∗ is d sparse. Subsequently, in the regret minimization block of phase i,
a fresh instance of OFUL Abbasi-Yadkori et al. (2011) is spawned, with the dimensions
restricted only to the set Di and probability parameter δi :=

δ
2i
. In the random exploration

phase, at each time, one of the possible arms from the set A is played chosen uniformly and
independently at random. At the end of each phase i ≥ 0, ALB-Dim forms an estimate θ̂i+1

of θ∗, by solving a least squares problem using all the random exploration samples collected
till the end of phase i. The active coordinate set Di+1, is then the coordinates of θ̂i+1 with
magnitude exceeding 2−(i+1). The pseudo-code is provided in Algorithm 3, where, ∀i ≥ 0,
Si in lines 15 and 16 is the total number of random-exploration samples in all phases upto
and including i.

6.1.3 Regret Guarantee

We first specify, how to set the input parameter T0, as function of δ. For any N ≥ d, denote
by AN to be the N ×d random matrix with each row being a vector sampled uniformly and
independently from the unit sphere in d dimensions. Denote by MN := 1

NE[AT
NAN ], and

4. We have not optimized over the constants like 36 and 6. Please refer to Remark 11 on this.
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by λ
(N)
max, λ

(N)
min, to be the largest and smallest eigenvalues of MN . Observe that as MN is

positive semi-definite (0 ≤ λ
(N)
min ≤ λ

(N)
max) and almost-surely full rank, i.e., P[λ

(N)
min > 0] = 1.

The constant T0 is the smallest integer such that

√
T0 ≥ max

(
32σ2

(λ
(⌈
√
T0⌉)

min )2
ln(2d/δ),

4

3

(6λ
(⌈
√
T0⌉)

max + λ
(⌈
√
T0⌉)

min )(d + λ
(⌈
√
T0⌉)

max )

(λ
(⌈
√
T0⌉)

min )2
ln(2d/δ)

)
(1)

Remark 10. T0 in Equation (1) is chosen such that, at the end of phase 0, P[||θ̂0−θ∗||∞ ≥
1/2] ≤ δ (Krikheli and Leshem, 2018). A formal statement of the Remark is provided in
Lemma 3 in Appendix A.

Theorem 5. Suppose Algorithm 3 is run with input parameters δ ∈ (0, 1), and T0 as given
in Equation (1), then with probability at-least 1− δ, the regret after a total of T arm-pulls
satisfies

RT ≤ C
T0

γ5.18
T0 + C1

√
T [1 +

√
d∗ ln(1 +

T

d∗
)(1 + σ

√
ln(

T

T0δ
) + d∗ ln(1 +

T

d∗
))].

The parameter γ > 0 is the minimum magnitude of the non-zero coordinate of θ∗, i.e.,
γ = min{|θ∗i | : θ∗i 6= 0} and d∗ the sparsity of θ∗, i.e., d∗ = |{i : θ∗i 6= 0}|.

In order to parse this result, we give the following corollary.

Corollary 1. Suppose Algorithm 3 is run with input parameters δ ∈ (0, 1), and T0 =
Õ
(
d2 ln2

(
1
δ

))
given in Equation (1), then with probability at-least 1− δ, the regret after T

times satisfies

RT ≤ O(
d2

γ5.18
ln2(d/δ)) + Õ(d∗

√
T ).

Remark 11. The constants in the above Theorem are not optimized. The epoch length and
the threshold parameter εi can be chosen more carefully. For example, if we set the epoch
length as 4iT0 + 2i

√
T0 and the threshold εi as (0.9)i, we obtain a worse dependence on

γ. Furthermore, the exponent of γ can be made arbitrarily close to 4, by setting εi = C−i

in Line 4 of Algorithm 3, for some appropriately large constant C > 1, and increasing
Ti = (C ′)iT0, for appropriately large C ′ (C ′ ≈ C4).

Discussion - The regret of an oracle algorithm that knows the true complexity d∗ scales as
Õ(d∗

√
T ) (Carpentier and Munos, 2012; Bastani and Bayati, 2020b), matching ALB-Dim’s

regret, upto an additive constant independent of time. ALB-Dim is the first algorithm
to achieve such model selection guarantees. On the other hand, standard linear bandit
algorithms such as OFUL achieve a regret scaling Õ(d

√
T ), which is much larger compared

to that of ALB-Dim, especially when d∗ << d, and γ is a constant. Numerical simulations
further confirms this deduction, thereby indicating that our improvements are fundamental
and not from mathematical bounds. Corollary 1 also indicates that ALB-Dim has higher
regret if γ is lower. A small value of γ makes it harder to distinguish a non-zero coordinate
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from a zero coordinate, which is reflected in the regret scaling. Nevertheless, this only
affects the second order term as a constant, and the dominant scaling term only depends
on the true complexity d∗, and not on the underlying dimension d. However, the regret
guarantee is not uniform over all θ∗ as it depends on γ. Obtaining regret rates matching
the oracles and that hold uniformly over all θ∗ is an interesting avenue of future work.

6.2 Dimension as a Measure of Complexity - Finite Armed Setting

6.2.1 Setup

In this section, we consider the model selection problem for the setting with finitely many
arms in the framework studied in Foster et al. (2019). At each time t ∈ [T ], the forecaster
is shown a context Xt ∈ X , where X is some arbitrary ‘feature space’. The set of contexts
(Xt)

T
t=1 are i.i.d. with Xt ∼ D, a probability distribution over X that is known to the

forecaster. Subsequently, the forecaster chooses an action At ∈ A, where the set A :=
{1, · · · ,K} are the K possible actions chosen by the forecaster. The forecaster then receives
a reward Yt := 〈θ∗, φM (Xt, At)〉 + ηt. Here (ηt)

T
t=1 is an i.i.d. sequence of 0 mean sub-

gaussian random variables with sub-gaussian parameter σ2 that is known to the forecaster.
The function5 φM : X ×A → R

d is a known feature map, and θ∗ ∈ R
d is an unknown vector.

The goal of the forecaster is to minimize its regret, namely R(T ) :=
∑T

t=1 E [〈A∗
t −At, θ

∗〉],
where at any time t, conditional on the context Xt, A

∗
t ∈ argmaxa∈A〈θ∗, φM (Xt, a)〉. Thus,

A∗
t is a random variable as Xt is random.

To describe the model selection, we consider a sequence of M dimensions 1 ≤ d1 <
d2, · · · < dM := d and an associated set of feature maps (φm)Mm=1, where for any m ∈ [M ],
φm(·, ·) : X × A → R

dm , is a feature map embedding into dm dimensions. Moreover, these
feature maps are nested, namely, for all m ∈ [M − 1], for all x ∈ X and a ∈ A, the first
dm coordinates of φm+1(x, a) equals φm(x, a). The forecaster is assumed to have knowledge
of these feature maps. The unknown vector θ∗ is such that its first dm∗ coordinates are
non-zero, while the rest are 0. The forecaster does not know the true dimension dm∗ . If this
were known, than standard contextual bandit algorithms such as LinUCB Chu et al. (2011)
can guarantee a regret scaling as Õ(

√
dm∗T ). In this section, we provide an algorithm in

which, even when the forecaster is unaware of dm∗ , the regret scales as Õ(
√
dm∗T ). However,

this result is non uniform over all θ∗ as, we will show, depends on the minimum non-zero
coordinate value in θ∗.

Model Assumptions We will require some assumptions identical to the ones stated in
Foster et al. (2019). Let ‖θ∗‖2 ≤ 1, which is known to the forecaster. The distribution D
is assumed to be known to the forecaster. Associated with the distribution D is a matrix
ΣM := 1

K

∑
a∈A E

[
φM (x, a)φM (x, a)T

]
(where x ∼ D), where we assume its minimum eigen

value λmin(ΣM ) > 0 is strictly positive. Further, we assume that, for all a ∈ A, the random
variable φM (x, a) (where x ∼ D is random) is a sub-gaussian random variable with (known)
parameter τ2.

5. Superscript M will become clear shortly
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6.2.2 ALB-Dim Algorithm

The algorithm here is identical to that of Algorithm 3, except that in place of OFUL, we use
SupLinRel of Chu et al. (2011) as the black-box. The details of the Algorithm are provided
in Appendix C.

6.2.3 Regret Guarantee

For brevity, we only state the Corollary of our main Theorem (Theorem 6) which is stated
in Appendix C.

Corollary 2. Suppose Algorithm 4 is run with input parameters δ ∈ (0, 1), and T0 =
Õ
(
d2 ln2

(
1
δ

))
given in Equation (16) , then with probability at-least 1 − δ, the regret after

T times satisfies

RT ≤ O

(
d2

γ5.18
ln2(d/δ)τ2 ln

(
TK

δ

))
+ Õ(

√
Td∗m),

where γ = min{|θ∗i | : θ∗i 6= 0} and θ∗ is d∗ sparse.

Discussion - Our regret scaling matches that of an oracle that knows the true problem
complexity and thus obtains a regret of Õ(

√
dm∗T ). This, thus improves on the rate com-

pared to that obtained in Foster et al. (2019), whose regret scaling is sub-optimal compared
to the oracle. On the other hand however, our regret bound depends on γ and is thus not
uniform over all θ∗, unlike Foster et al. (2019) that is uniform over θ∗. Thus, in general,
our results are not directly comparable to that of Foster et al. (2019). It is an interesting
future work to close the gap and in particular, obtain the regret matching that of an oracle
to hold uniformly over all θ∗.

7. Comparison Study: ACB vs. ALB-DIM for Finite Armed Stochastic

Linear Bandits

In this section, we study the model selection algorithm for generic contextual bandits, ACB
(see Algorithm 1) in the special setting of stochastic linear bandits with finite number of
arms. We see that order-wise, the generic Algorithm, ACB recovers the regret guarantees of
the linear bandit setup (with finite number of arms).

Recall the problem setup of Section 6.2. Additionally, for simplicity, we also assume that
the context embeddings φj(x, a) is a dj dimensional standard Gaussian random variable.
Note that this is stronger than the sub-Gaussian assumption of Section 6.2.

Rewriting the nested hypothesis class, this corresponds to setting the function classes
Fj to be the linear class as the following:

Fj = {(x, a) 7→ 〈θj , φj(x, a)〉|θj ∈ R
dj , ‖θ‖ ≤ 1},

where d1 ≤ d2 ≤ . . . ≤ dM = d. Also, let m∗ is the smallest index such that the optimal
regressor is realized, i.e.,

f∗
m∗(x, a) = 〈θ∗, φm∗

(x, a)〉,
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and hence this can be cast-ed as a model selection problem in our framework. Let us look
at the separability condition (Assumption 2). In order to do that, we take j = m∗ − 1, we
first compute

f̄j = arginff∈Fj
Ex,a[f(x, a)− f∗

m∗(x, a)]2,

and then compute the quantity

Ex,a[f̄j(x, a)− f∗
m∗(x, a)]2.

Substituting f∗
m∗(x, a) = 〈θ∗, φm∗

(x, a)〉 and optimizing over θj, we obtain

Ex,a[f̄j(x, a) − f∗
m∗(x, a)]2 ≥ γ2,

where γ is the minimum magnitude of the non-zero coordinate of θ∗, i.e., γ = min{|θ∗i | :
θ∗i 6= 0}.

Note that in the above calculation (i) the minimizer θj corresponding to f̄j, is precisely
a m∗ − 1 dimensional vector with entries equal to the first m∗ − 1 coordinates of θ∗; (ii)
using the fact that φ(., .) is distributed as a standard Gaussian and has nested structure,
we obtain the lower bound.

Hence for stochastic linear bandits, one may take ∆ = γ2. Suppose we run ACB (Algo-
rithm 1) in this setup for T iterations. Observe that the linear function class has infinite car-
dinality, but the class of linear functions of dimension di has a VC-dimension is di+1 for all
i. Hence, substituting in the regret expression of Theorem 3, with ξFd,1/2m/2(T ) = Õ(d/T )
(linear class of d dimensional functions, VC-dimension is d+ 1), we obtain

R(T ) ≤ Õ
[(

d

γ4

)
+
√

KTdm∗

]
.

with high probability. Here, we ignore the log factors.

On the other hand, if we use Theorem 6, we obtain a regret of

R(T ) ≤ Õ
[(

d2

γ5.18

)
+
√
Tdm∗

]
,

with high probability. Several remarks are in order:

Remark 12. If the number of actions K = O(1), both the regret scaling are order-wise
same. Hence, in this setting, ACB recovers the performance of ALB-DIM, as we claim in the
introduction.

Remark 13. Note that, the performance of ACB Algorithm 1 specialized to the linear setting
is worse than ALB-DIM Theorem 6 when K is large. In particular, there is no K depen-
dence in Theorem 6, but we have a

√
K term in the leading factor here. Note that ACB(

Algorithm 1) is applicable for any generic contextual bandit problem, whereas Algorithm 4
is specialized to the linear case only. The price of

√
K in regret can be viewed as the cost

of generalization.
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Remark 14. Let us now focus on the additive (minor) term with no T dependence. It scales
as 1/γ4 for ACB, whereas for ALB-DIM it scales as 1/γ5.18. Note that, we remarked (after
Theorem 4) that via carefully choosing the problem constants, the dependence in Theorem 6
can be made arbitrarily close to 1/γ4. In that setting, we have the same dependence on γ
in both the cases.

Remark 15. Finally, note that the additive term is linearly dependent (d) in ACB, whereas
it has a quadratic dependence (d2) in ALB-DIM. We believe this stems from the analysis
of ALB-DIM. In Algorithm 4, we successively estimate the support of the underlying true
parameter θ∗, and it is not clear whether support recovery is indeed required to ensure low
regret.

8. Numerical Experiments
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(c) Dimension refinement
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Figure 1: Synthetic experiments, validating the effectiveness of Algorithm 3 and compar-
isons with several baselines. All the results are averaged over 25 trials.

In this section we will verify the theoretical findings. We concentrate on the linear
contextual bandit setup. We compare ALB-Dim with the (non-adaptive) OFUL algorithm
of Abbasi-Yadkori et al. (2011) and an oracle that knows the problem complexity apriori.
The oracle just runs OFUL with the known problem complexity. At each round of the
learning algorithm, we sample the context vectors from a d-dimensional standard Gaussian,
N (0, Id). The additive noise to be zero-mean Gaussian random variable with variance 0.5.
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In panel (a)-(c), we compare the performance of ALB-Dimwith OFUL (Abbasi-Yadkori et al.
(2011)) and an oracle who knows the true support of θ∗ apriori. For computational ease, we
set εi = 2−i in simulations. We select θ∗ to be d∗ = 20-sparse, with the smallest non-zero
component, γ = 0.12. We have 2 settings: (i) d = 500 and (ii) d = 200. In panel (d) and
(e), we observe a huge gap in cumulative regret between ALB-Dim and OFUL, thus showing
the effectiveness of dimension adaptation. In panel (c), we plot the successive dimension
refinement over epochs. We observe that within 4− 5 epochs, ALB-Dim finds the sparsity of
θ∗.

Comparison of ALB (dim): When θ∗ is sparse, we compare ALB-Dim with 3 baselines:
(i) the ModCB algorithm of Foster et al. (2019) (ii) the Stochastic Corral algorithm of
Pacchiano et al. (2020b) and (iii) an oracle which knows the support of θ∗. We select
θ∗ to be d∗ = 20 sparse, with dimension d = 200 and d = 500. The smallest non-zero
component of θ∗ is 0.12. For ModCB, we use ILOVETOCONBANDITS algorithm, similar
to Agarwal et al. (2014b). We select the cardinality of action set as 2 and select the sub-
Gaussian parameter of the embedding as unity. In Figures 1(d) and 1(e), we observe that,
the regret of ALB (dim) is better than ModCB and Stochastic Corral. The theoretical regret
bound for ModCB scales as O(T 2/3) (which is much larger than the ALB-Dim algorithm we
propose), and Figure 1(c), validates this. The Stochastic Corral algorithm treats the base
algorithms as bandit arms (with bandit feedback), as opposed to ALB-Dim which, at each
arm-pull, updates the information about all the base algorithms. Thus, (Figs 1(d), 1(e)),
ALB-Dim has a superior performance compared to Stochastic Corral.

Appendix

Appendix A. Model Selection for Contextual Bandits

A.1 Proof of Lemma 1

Let us first show that Sm
j concentrates around its expectation. We show it via a simple

application of the Hoeffdings inequality.

Fix a particular m and j ∈ [M ]. Note that f̂m
j is computed based on 2m−2 samples. Also,

in the testing phase, we use a fresh set of 2m−2 samples, and so f̂m
j is independent of the

second set of samples, used in constructing Sm
j . Note that since we have r(.) ∈ [0, 1], we may

restrict the offline regression oracle to search over functions having range [0, 1]. This implies
that, we have f̂m

j (.) ∈ [0, 1]. Note that this restricted search assumption is justified since our
goal is obtain an estimate of the reward function via regression function, and this assumption
also features in Simchi-Levi and Xu (2020). So the random variable (f̂m

j (xt, at) − rt(at))
2

is upper-bounded by 4, and hence sub-Gaussian with a constant parameter.
Note that we are using only the samples from the previous epoch. Note that in ACB,

the regression estimate actually remains fixed over an entire epoch. Hence, conditioning on
the filtration consisting of (context, action, reward) triplet upto the end of the m − 2-th
epoch, the random variables {(f̂j(xt, at)− rt(at))

2}τm−1

t=τm−1/2+1 (a total of 2m−2 samples) are

independent. Note that similar argument is given in (Simchi-Levi and Xu, 2020, Section
3.1) (the FALCON+ algorithm) to argue the independence of the (context, action, reward)
triplet, accumulated over just the previous epoch.
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Hence using Hoeffdings inequality for sub-Gaussian random variables, we have

P (|Sj − ESj| ≥ ℓ) ≤ 2 exp(−nℓ2/32).
Recall Assumption 1.Note that, the conditional variance of rt(.) is finite, i.e., given x ∈ X ,

E[rt(a)− f∗
d∗(x, a)]

2 ≤ 1, for all a ∈ A. Let us define6 E[rt(a)− f∗
d∗(x, a)]

2 = σ2. With this
new notation, let us first look at the expression ESj.

Realizable classes: Fix m and consider j ∈ [M ] such that j ≥ d∗. So, for this realizable
setting, we obtain the excess risk as:

Ex,r,a[f̂
m
j (x, a)− r(a)]2 − inf

f∈Fj

Ex,r,a[f(x, a)− r(a)]2

= Ex,r,a[f̂
m
j (x, a)− r(a)]2 − Ex,r,a[f

∗
d∗(x, a) − r(a)]2

= Ex,a[f̂
m
j (x, a) − f∗

d∗(x, a)]
2.

So, we have, for the realizable function class,

ESm
j =

1

2m−2
Ext,rt,at

2m−2∑

t=1

[f̂m
j (xt, at)− rt(at)]

2

=
1

2m−2

2m−2∑

t=1

Ext,rt,at [f
∗
d∗(xt, at)− rt(at)]

2 +
1

2m−2

2m−2∑

t=1

Ext,at [f̂
m
j (x, a) − f∗

d∗(x, a)]
2

≤ σ2 + C1 log(2
m/2|Fj |)/(2m−2),

Here, the first term comes from the second moment bound of σ2, and the second term comes
by setting the high probability slack as 2−m/2 into (Agarwal et al., 2012, Lemma 4.1). So,
by applying Hoeffding’s inequality, we finally have (using the bound ESm

j ≥ σ2):

σ2 − C3

√
log(1/δ)

2m/2
− C4

√
m

2m/2
≤ Sm

j ≤ σ2+

C1
log(|Fj |)

2m
+ C2

m

2m
+ C3

√
log(1/δ)

2m/2
+ C4

√
m

2m/2

with probability at least 1− δ/2m. Since we have doubling epoch, we have

N∑

m=1

2m ≤ T,

where N is the number of epochs and T is the time horizon. From above, we obtain
N = O(log2 T ). Using the bound, m ≤ N , note that, provided

2m & max{log T, log(|FM |), log(1/δ)}, (2)

we have for some absolute global constant c0, for any j ≥ d∗,

σ2 − c0

2m/2
≤ Sm

j ≤ σ2 +
c0

2m/2
(3)

with probability at least 1− δ/2m.

6. We use the notation σ
2 throughout the rest of the paper.
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Non-Realizable classes: For the non realizable classes, we have the following calcula-
tion. For any f ∈ Fj , where j < d∗, we have

Ex,r,a[f(x, a)− r(a)]2 − Ex,r,a[r(a)− f∗
d∗(x, a)]

2

= Ex,a,r[(f(x, a)− f∗
d∗(x, a))(f(x, a) + f∗

d∗(x, a)− 2r(a)]

= Ex,aEr|x[(f(x, a)− f∗
d∗(x, a))(f(x, a) + f∗

d∗(x, a) − 2r(a)]

= Ex,a[(f(x, a)− f∗
d∗(x, a))(f(x, a) + f∗

d∗(x, a)− 2Er|xr(a)]

= Ex,a[f(x, a)− f∗
d∗(x, a)]

2,

where the third inequality follows from the fact that given context x, the distribution of r
in independent of a (see (Agarwal et al., 2012, Lemma 4.1)).

So, we have

Ex,r,a[f(x, a)− r(a)]2 ≥ Ex,r,a[r(a)− f∗
d∗(x, a)]

2 + Ex,a[f(x, a)− f∗
d∗(x, a)]

2

≥ ∆+ σ2,

where the last inequality comes from the separability assumption along with the assumption
on the second moment. Since the regressor f̂m

j ∈ Fj , we have

Ex,r,a[f̂
m
j (x, a)− r(a)]2 ≥ Ex,r,a[r(a)− f∗

d∗(x, a)]
2 + Ex,a[f(x, a)− f∗

d∗(x, a)]
2

≥ ∆+ σ2.

Now, using 2m−2 samples, we obtain from Hoeffding’s inequality that

Sm
j ≥ ∆+ σ2 − C5

√
log(1/δ)

2m/2
− C6

√
m

2m/2

with probability at least 1−δ/2m. In particular, since 2m & max{log T, log(|FM |), log(1/δ)},
there is a global constant c1 such that, for any j < d∗,

Sm
j ≥ ∆+ σ2 − c1

2m/2
, (4)

holds with probability at least 1− δ/2m.

In every phase m, denote by the threshold γm := Sm
M +

√
m

2m/2 , i.e., the Model Selection
parameter in Line 8 of Algorithm 1. Now, let m0 be the smallest value of m satisfying
2m & max{ log T

∆2 , log(|FM |), log(1/δ)}. We have from Equations (3) and (4) and a union
bound over the M classes that, with probability at-least 1−∑m≥1 2Mδ2−m, for all phases
m ≥ m0,

Sm
j ≥ σ2 +∆− c1

2m/2
, for all 1 ≤ j < d∗,

σ2 − c0
2m/2

≤ Sm
j ≤ σ2 +

c0
2m/2

, for all j ≥ d∗.

The preceding display, along with the fact that the threshold γm = SM
m +

√
m
2m , gives that,

with probability at-least 1− 2Mδ and all phases m ≥ m0,

Sm
d∗ ≤ σ2 +

c0

2m/2
≤ σ2 − c0

2m/2
+

√
m

2m/2
≤ γm ≤ σ2 +

c0

2m/2
+

√
m

2m/2
,

≤ σ2 +∆− c1

2m/2
.
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The second inequality follows since 2m & log T
∆2 , by definition of m0. The above equations

guarantee that, with probability at-least 1−2Mδ, in all phases m ≥ m0, the model selection
procedure in Line 8 of Algorithm 1, identifies the correct class d∗.

A.2 Proof of Theorem 1

The above calculation shows that as soon as

2m & log T max{log(|FM |), log(1/δ),∆−2},

the model selection procedure will succeed with high probability. Until the above condition
is satisfied, we do not have any handle on the regret and hence the regret in that phase
will be linear. This corresponds the first term in the regret expression. Suppose m∗ be the
epoch index where the conditions of Lemma 1 hold. Then, for m > m∗, the regret is given
by (see Simchi-Levi and Xu (2020)):

N∑

m=m∗

O
(√

K(τm − τm−1) log(|Fd∗ |(τm − τm−1)/δ
)
≤ O

(√
KT log(|Fd∗ |T/δ

)
,

with probability exceeding 1 − δ, where N is the number of epochs. Lemma 1 gives
that the total number of rounds till the beginning of phase m∗ is upper bounded by
O(log T max{log(|FM |), log(1/δ),∆−2}), where O hides global absolute constants. So, the
total regret is given by

R(T ) ≤ O(log T max{log(|FM |), log(1/δ),∆−2)}

+
N∑

m=m∗

O
(√

K(τm − τm−1) log(|Fd∗ |(τm − τm−1)/δ
)
,

with probability at-least 1− δ − 2Mδ. Simplifying the summation, we get

N∑

m=m∗

O
(√

K(τm − τm−1) log(|Fd∗ |(τm − τm−1)/δ
)

≤
N∑

m=1

O
(√

K(τm − τm−1) log(|Fd∗ |(τm − τm−1)/δ
)

≤ O(
√

K log(|Fd∗ |(T )/δ)
N∑

m=1

√
τm − τm−1.

Note that, with τm = 2m, the epoch length τm − τm−1 doubles with m. Let the length of
the N -th epoch is TN . We have

N∑

i=1

√
τm − τm−1 =

√
TN

(
1 +

1√
2
+

1

2
+ . . . N -th term

)

≤
√

TN

(
1 +

1√
2
+

1

2
+ ...

)
=

√
2√

2− 1

√
TN ≤

√
2√

2− 1

√
T ,

and this completes the proof of the theorem.
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A.3 Proof of Lemma 2

Since, we have samples from pure exploration, let us first show that Sj concentrates around
its expectation. We show it via a simple application of the Hoeffdings inequality.

Fix a particular j ∈ [M ]. Note that f̂j is computed based on the first set of ⌈
√
T ⌉ samples.

Also, in the testing phase, we again sample ⌈
√
T ⌉ samples, and so f̂ is independent of the

second set of ⌈
√
T ⌉ samples, used in constructing Sj . Note that we have r(.) ∈ [0, 1].

Furthermore, as explained in the proof of Lemma 1, it is sufficient to have f̂(.) ∈ [0, 1]. So
the random variable (f̂j(xt, at) − rt(at))

2 is upper-bounded by 4, and hence sub-Gaussian
with a constant parameter. Also, note that since we are choosing an action independent of

the context, the random variables {(f̂j(xt, at)− rt(at))
2}⌈

√
T ⌉

t=1 are independent. Hence using
Hoeffdings inequality for sub-Gaussian random variables, we have

P (|Sj − ESj| ≥ ℓ) ≤ 2 exp(−nℓ2/32).

Re-writing the above, we obtain

|Sj − ESj| ≤ C

√
log(1/δ)√

T
(5)

with probability at least 1− 2δ. Let us look at the expression ESj.

ESj = E


 1

⌈
√
T ⌉

⌈
√
T⌉∑

t=1

(f̂j(xt, at)− rt(at))
2


 .

Case I: Realizable Class First consider the case that j ≥ d∗, meaning that f∗
d∗ ∈ Fj .

So, for this realizable setting, we obtain the excess risk as (using Agarwal et al. (2012))

Ex,r,a[f̂j(x, a)− r(a)]2 − inf
f∈Fj

Ex,r,a[f(x, a)− r(a)]2

= Ex,r,a[f̂j(x, a)− r(a)]2 − Ex,r,a[f
∗
d∗(x, a) − r(a)]2

= Ex,a[f̂j(x, a) − f∗
d∗(x, a)]

2.

So, we have, for the realizable function class,

ESj =
1

⌈
√
T ⌉

Ext,rt,at

⌈
√
T ⌉∑

t=1

[f̂j(xt, at)− rt(at)]
2

=
1

⌈
√
T ⌉

⌈
√
T⌉∑

t=1

Ext,rt,at [f
∗
d∗(xt, at)− rt(at)]

2 +
1

⌈
√
T ⌉

⌈
√
T ⌉∑

t=1

Ext,at [f̂(x, a)− f∗
d∗(x, a)]

2

≤ σ2 + C1
log(
√
T |Fj |)√
T

where C1 is an absolute constant. The second term is obtained by setting the high proba-
bility slack, as 2−m/2 into (Agarwal et al., 2012, Lemma 4.1).So, we finally have from the
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preceeding display and Equation (5) that

σ2 − C2

√
log(1/δ)√

T
≤ Sj ≤ σ2 + C2

log(
√
T |Fj |)√
T

+ C3

√
log(1/δ)√

T
(6)

with probability at least 1− 2δ.

Case II: Non-realizable class We now consider the case when j < d∗, meaning that
f∗
d∗ does not lie in Fj . Similar to the proof of Lemma 1, we have

Ex,r,a[f(x, a)− r(a)]2 ≥ Ex,r,a[r(a)− f∗
d∗(x, a)]

2 + Ex,a[f(x, a)− f∗
d∗(x, a)]

2

≥ ∆+ σ2,

where the last inequality comes from the separability assumption along with the assumption
on the second moment. Since the regressor f̂j ∈ Fj , we have

Ex,r,a[f̂j(x, a)− r(a)]2 ≥ Ex,r,a[r(a)− f∗
d∗(x, a)]

2 + Ex,a[f(x, a)− f∗
d∗(x, a)]

2

≥ ∆+ σ2,

and hence

ESj ≥ ∆+ σ2

So, in this setting, with probability 1− 2δ,

Sj ≥ ESj − C4

√
log(1/δ)√

T
(7)

≥ ∆+ σ2 − C4

√
log(1/δ)√

T
. (8)

where C is an absolute global constant. Thus, from Equations (6) and (8) and an union
bound over the M classes, we have with probability at-least 1− 4Mδ,

Sj ≥ σ2 − C2
log(
√
T |Fj |)√
T

− C3

√
log(1/δ)√

T
, for all j ≥ d∗,

Sj ≤ σ2 + C2
log(
√
T |Fj |)√
T

+ C3

√
log(1/δ)√

T
, for all j ≥ d∗,

Sj ≥ ∆+ σ2 − C4

√
log(1/δ)√

T
, for all j < d∗.

(9)
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Choice of Threshold Notice from Line 11 of Algorithm 2, that the threshold for model

selection is γ := SM +
√

log(T )√
T

. Thus, if the event in Equations (9) holds, then the model

selection stage will succeed in identifying the correct model class if the threshold γ satisfies

γ < ∆+ σ2 − C4

√
log(1/δ)√

T
,

γ > σ2 + C2
log(
√
T |Fj |)√
T

+ C3

√
log(1/δ)√

T

(10)

The first item ensures that no-non realizable class will be selected as the true model, and
the second item ensures that the smallest realizable class will be selected as the true model.
Thus, if the time horizon T satisfies

√
log(T )√

T
≥ 2

(
C2

log(
√
T |Fj |)√
T

+ C3

√
log(1/δ)√

T

)
,

√
log(T )√

T
+ C2

log(
√
T |Fj |)√
T

+ C3

√
log(1/δ)√

T
≤ ∆− C4

√
log(1/δ)√

T
,

(11)
then the threshold γ satisfies the conditions in Equations (10). It is easy to verify that

for T & (log T )max
(
log
(√

T |FM |
)
,∆−4, log(1/δ)

)
, then the conditions in Equations (11)

holds. Thus, Equations (9), (10) and (11) yield that, if

T & (log T )max
(
log
(√

T |FM |
)
,∆−4, log(1/δ)

)
,

with probability at-least 1−4Mδ, the model selection test in Line 11 of Algorithm 2 correctly
identifies the smallest model class containing the true model.

A.4 Proof of Theorem 2

The regret R(T ) can be decomposed in 2 stages, namely exploration and exploitation.

R(T ) = Rexplore +Rexploit

Since we spend 2⌈
√
T⌉ time steps in exploration, and rt(.) ∈ [0, 1], the regret incurred in

this stage

Rexplore ≤ C1

√
T .

Now, at the end of the explore stage, provided Assumptions 2 and 3, we know, with proba-
bility at least 1−4Mδ, we obtain the true function class Fd∗ . The threshold is set in such a
way that we obtain the above result. Now, we would just commit to the function class and
use the contextual bandit algorithm, namely FALCON. From Simchi-Levi and Xu (2020),
the regret guarantee of FALCON is

Rexploit ≤ O
(√

K(T − 2⌊
√
T ⌋) log(|Fd∗ |(T − 2⌊

√
T⌋)/δ

)

≤ O
(√

KT log(|Fd∗ |T/δ
)
,
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with probability exceeding 1− δ. Combining the above expressions yield the result.

A.5 Proof of Theorem 3

The proof follows by combining the proof of Theorem 1 and 4.
For the realizable classes, we have (from Assumption 4 and converting the conditional
expectation to unconditional one with probability slack as 1/2m/2, similar to the proof of
Lemma 1),

ESm
j ≤ σ2 + ξFj ,1/2m/2(2m−2) + 2(

1

2m/2
),

and as a result

Sm
j ≤ σ2 + ξFj ,1/2m/2(2m−2) + C1

√
log(1/δ)

2m/2
+ C2

√
m

2m/2

with probability at least 1− 2δ/2m.
Similarly, for non-realizable classes we obtain

Sm
j ≥ ∆+ σ2 − C3

√
log(1/δ)

2m/2
− C4

√
m

2m/2

with probability at least 1− δ/2m.

Now, suppose we choose the threshold γ = Sm
M +

√
m

2m/2 . Finally, we say that provided

2m & (log T )max{max
m

2m/2 ξFM ,1/2m/2(2m−2), log(1/δ),∆−2},

the model selection procedure succeeds with probability exceeding

1−
∞∑

m=1

2Mδ/2m ≥ 1− 2Mδ.

The rest of the proof follows similarly to Theorem 1, and we omit the details here.

A.6 Proof of Theorem 4

Case I: Realizable Class Consider j ≥ d∗. Using calculations similar to the finite
cardinality setting, we obtain

ESj ≤ σ2 + ξFj ,(1/T 1/4)(
√
T ) + 2(1/T 1/4),

where we use the definition of ξ(.), as given in Assumption 4. Hence, invoking Hoeffding’s
inequality, we obtain

Sj ≤ σ2 + ξFj ,(1/T 1/4)(
√
T ) + 2(1/T 1/4) + C1T

−1/4
√

log(1/δ)

≤ σ2 + ξFj ,(1/T 1/4)(
√
T ) + C1T

−1/4
√

log(1/δ)

with probability at least 1− 2δ. We also have (from 2-sided Hoeffding’s)

Sj ≥ σ2 − C2T
−1/4

√
log(1/δ)
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Case II: Non-realizable Class We now consider the setting where j < d∗, meaning
that f∗

d∗ does not lie in Fj . In this case, similar to above, we have

ESj ≥ ∆+ σ2,

and hence

Sj ≥ ESj −
√

32 log(1/δ)√
T

≥ ∆+ σ2 −
√

32 log(1/δ)√
T

.

Now, with the threshold, γ = SM +
√

log T√
T
, provided

T & (log T )max
(
log
(
T 1/4ξFM ,(1/T 1/4)

)
,∆−4, log(1/δ)

)
,

the model selection procedure succeeds with probability at least 1 − 2Mδ, where we do a
calculation similar to the proof of Lemma 2.

After obtaining the correct model class, the regret expression comes directly from Simchi-Levi and Xu
(2020) in the infinite function class setting.

Appendix B. Model Selection for Linear Stochastic bandits

B.1 Proof of Theorem 5

We shall need the following lemma from Krikheli and Leshem (2018), on the behaviour of
linear regression estimates.

Lemma 3. If M ≥ d and satisfies M = O
((

1
ε2

+ d
)
ln
(
1
δ

))
, and θ̂(M) is the least-squares

estimate of θ∗, using the M random samples for feature, where each feature is chosen
uniformly and independently on the unit sphere in d dimensions, then with probability 1, θ̂
is well defined (the least squares regression has an unique solution). Furthermore,

P[||θ̂(M) − θ∗||∞ ≥ ε] ≤ δ.

We shall now apply the theorem as follows. Denote by θ̂i to be the estimate of θ∗ at the
beginning of any phase i, using all the samples from random explorations in all phases less
than or equal to i− 1.

Remark 16. The choice T0 := O
(
d2 ln2

(
1
δ

))
in Equation (1) is chosen such that from

Lemma 4, we have that

P

[
||θ̂(⌈

√
T0⌉) − θ∗||∞ ≥

1

2

]
≤ δ
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Lemma 4. Suppose T0 = O
(
d2 ln2

(
1
δ

))
is set according to Equation (1). Then, for all

phases i ≥ 4,

P

[
||θ̂i − θ∗||∞ ≥ 2−i

]
≤ δ

2i
, (12)

where θ̂i is the estimate of θ∗ obtained by solving the least squares estimate using all random
exploration samples until the beginning of phase i.

Proof. The above lemma follows directly from Lemma 3. Lemma 3 gives that if θ̂i is formed

by solving the least squares estimate with at-least Mi := O
((

4i + d
)
ln
(
2i

δ

))
samples,

then the guarantee in Equation (12) holds. However, as T0 = O
(
(d+ 1) ln

(
2
δ

))
, we have

naturally that Mi ≤ 4ii
√
T0. The proof is concluded if we show that at the beginning of

phase i ≥ 4, the total number of random explorations performed by the algorithm exceeds
i4i⌈√T0⌉. Notice that at the beginning of any phase i ≥ 4, the total number of random
explorations that have been performed is

i−1∑

j=0

6i⌈
√

T0⌉ = ⌈
√

T0⌉
6i − 1

4
,

≥ i4i⌈
√

T0⌉,

where the last inequality holds for all i ≥ 10.

The following corollary follows from a straightforward union bound.

Corollary 3.

P



⋂

i≥4

||
{
θ̂i − θ∗||∞ ≤ 2−i

}

 ≥ 1− δ.

Proof. This follows from a simple union bound as follows.

P



⋂

i≥4

{
||θ̂i − θ∗||∞ ≤ 2−i

}

 = 1− P



⋃

i≥4

{
||θ̂i − θ∗||∞ ≥ 2−i

}

 ,

≥ 1−
∑

i≥4

P

[
||θ̂i − θ∗||∞ ≥ 2−i

]
,

≥ 1−
∑

i≥4

δ

2i
,

≥ 1−
∑

i≥2

δ

2i
,

= 1− δ

2
.
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We are now ready to conclude the proof of Theorem 5.

Proof of Theorem 5. We know from Corollary 3, that with probability at-least 1 − δ, for
all phases i ≥ 10, we have ||θ̂i − θ∗||∞ ≤ 2−i. Call this event E . Now, consider the phase

i(γ) := max
(
10, log2

(
1
γ

))
. Now, when event E holds, then for all phases i ≥ i(γ), Di is

the correct set of d∗ non-zero coordinates of θ∗. Thus, with probability at-least 1 − δ, the
total regret upto time T can be upper bounded as follows

RT ≤
i(γ)−1∑

j=0

(
36iT0 + 6i⌈

√
T0⌉
)
+

⌈
log36

(

T
T0

)

⌉

∑

j≥i(γ)

Regret(OFUL(1, δi; 36
iT0)

+

⌈
log36

(

T
T0

)

⌉

∑

j=i(γ)

6j⌈
√

T0⌉. (13)

The term Regret(OFUL(L, δ, T ) denotes the regret of the OFUL algorithm Abbasi-Yadkori et al.
(2011), when run with parameters L ∈ R+, such that ‖θ∗‖ ≤ L, and δ ∈ (0, 1) denotes the
probability slack and T is the time horizon. Equation (13) follows, since the total number

of phases is at-most

⌈
log36

(
T
T0

)⌉
. Standard result from Abbasi-Yadkori et al. (2011) give

us that, with probability at-least 1− δ, we have

Regret(OFUL(1, δ;T ) ≤ 4

√
Td∗ ln

(
1 +

T

d∗

)(
1 + σ

√
2 ln

(
1

δ

)
+ d∗ ln

(
1 +

T

d

))
.

Thus, we know that with probability at-least 1 −∑i≥4 δi ≥ 1 − δ
2 , for all phases i ≥ i(γ),

the regret in the exploration phase satisfies

Regret(OFUL(1, δi; 36
iT0) ≤ 4

√
d∗36iT0 ln

(
1 +

36iT0

d∗

)

×
(
1 + σ

√
2 ln

(
2i

δ

)
+ d∗ ln

(
1 +

36iT0

d∗

))
. (14)

In particular, for all phases i ∈ [i(γ), ⌈log36
(

T
T0

)
], with probability at-least 1 − δ

2 , we

have

Regret(OFUL(1, δi; 36
iT0) ≤ 4

√
d∗36iT0 ln

(
1 +

T

d∗

)

×
(
1 + σ

√
2 ln

(
T

T0δ

)
+ d∗ ln

(
1 +

T

d∗

))
,

= C(T, δ, d∗)
√

36iT0, (15)
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where the constant captures all the terms that only depend on T , δ and d∗. We can write
that constant as

C(T, δ, d∗) = 4

√
d∗ ln

(
1 +

T

d∗

)(
1 + σ

√
2 ln

(
T

T0δ

)
+ d∗ ln

(
1 +

T

d∗

))
.

Equation (15) follows, by substituting i ≤ log36

(
T
T0

)
in all terms except the first 36i

term in Equation (14). As Equations (15) and (13) each hold with probability at-least 1− δ
2 ,

we can combine them to get that with probability at-least 1− δ,

RT ≤ 2T036
i(γ) +

log36

(

T
T0

)

+1∑

j=0

C(T, δ, d∗)
√

36jT0 + ⌈
√

T0⌉6log36
(

T
T0

)

,

≤ O


T036

i(γ) +
√
T + C(T, δ, d∗)

log36

(

T
T0

)

+1∑

j=0

√
36jT0


 ,

(a)

≤ O
(
T0

2

γ5.18
+
√
T +
√
TC(T, δ, d∗)

)
,

= O
(

d2

γ5.18
ln2
(
1

δ

))
+ Õ

(
d∗

√
T ln

(
1

δ

))
.

Step (a) follows from 36 ≤ 25.18.

Appendix C. ALB-Dim for Stochastic Contextual Bandits with Finite Arms

C.1 ALB-Dim Algorithm for the Finite Armed Case

The algorithm given in Algorithm 4 is identical to the earlier Algorithm 3, except in Line
8, this algorithm uses SupLinRel of Chu et al. (2011) as opposed to OFUL used in the
previous algorithm. In practice, one could also use LinUCB of Chu et al. (2011) in place
of SupLinRel. However, we choose to present the theoretical argument using SupLinRel,
as unlike LinUCB, has an explicit closed form regret bound (see Chu et al. (2011)). The
pseudocode is provided in Algorithm 4.

In phase i ∈ N, the SupLinRel algorithm is instantiated with input parameter 36iT0

denoting the time horizon, slack parameter δi ∈ (0, 1), dimension dMi and feature scaling
b(δ). We explain the role of these input parameters. The dimension ensures that SupLinRel
plays from the restricted dimension dMi . The feature scaling implies that when a context
x ∈ X is presented to the algorithm, the set of K feature vectors, each of which is dMi

dimensional are φ
dMi (x,1)
b(δ) , · · · , φ

dMi (x,K)
b(δ) . The constant b(δ) := O

(
τ
√

log
(
TK
δ

))
is chosen

such that

P

[
sup

t∈[0,T ],a∈A
‖φM (xt, a)‖2 ≥ b(δ)

]
≤ δ

4
.
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Algorithm 4: Adaptive Linear Bandit (Dimension) with Finitely Many arms

1: Input: Initial Phase length T0 and slack δ > 0.
2: β̂0 = 1, T−1 = 0
3: for Each epoch i ∈ {0, 1, 2, · · · } do
4: Ti = 36iT0, εi ← 1

2i
, δi ← δ

2i

5: Di := {i : |β̂i| ≥ εi
2 }

6: Mi := inf{m : dm ≥ maxDi}.
7: for Times t ∈ {Ti−1 + 1, · · · , Ti} do
8: Play according to SupLinRel of Auer (2002) with time horizon of 36iT0 with

parameters δi ∈ (0, 1), dimension dMi and feature scaling

b(δ) := O

(
τ
√

log
(
TK
δ

))
.

9: end for
10: for Times t ∈ {Ti + 1, · · · , Ti + 6i

√
T0} do

11: Play an arm from the action set A chosen uniformly and independently at
random.

12: end for
13: αi ∈ R

Si×d with each row being the arm played during all random explorations in
the past.

14: yi ∈ R
Si with i-th entry being the observed reward at the i-th random exploration

in the past
15: β̂i+1 ← (αT

i αi)
−1

αiyi, is a d dimensional vector
16: end for

Such a constant exists since (xt)t∈[0,T ] are i.i.d. and φM (x, a) is a sub-gaussian random
variable with parameter 4τ2, for all a ∈ A. Similar idea was used in Foster et al. (2019).

C.2 Regret Guarantee for Algorithm 4

In order to specify a regret guarantee, we will need to specify the value of T0. We do so

as before. For any N , denote by λ
(N)
max and λ

(N)
min to be the maximum and minimum eigen

values of the following matrix: ΣN := E

[
1
K

∑K
j=1

∑N
t=1 φ

M (xt, j)φ
M (xt, j)

T
]
, where the

expectation is with respect to (xt)t∈[T ] which is an i.i.d. sequence with distribution D.
First, given the distribution of x ∼ D, one can (in principle) compute λ

(N)
max and λ

(N)
min for

any N ≥ 1. Furthermore, from the assumption on D, λ(N)
min = Õ

(
1√
d

)
> 0 for all N ≥ 1.

Choose T0 ∈ N to be the smallest integer such that

√
T0 ≥ b(δ)max

(
32σ2

(λ
(⌈
√
T0⌉)

min )2
ln(2d/δ),

4

3

(6λ
(⌈
√
T0⌉)

max + λ
(⌈
√
T0⌉)

min )(d+ λ
(⌈
√
T0⌉)

max )

(λ
(⌈
√
T0⌉)

min )2
ln(2d/δ)

)
.

(16)
As before, it is easy to see that

T0 = O

(
d2 ln2

(
1

δ

)
τ2 ln

(
TK

δ

))
.

33



Ghosh, Sankararaman and Ramchandran—2021

Furthermore, following the same reasoning as in Lemmas 4 and 3, one can verify that for

all i ≥ 4, P
[
‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤ δ

2i
.

Theorem 6. Suppose Algorithm 4 is run with input parameters δ ∈ (0, 1), and T0 as given
in Equation (16), then with probability at-least 1− δ, the regret after a total of T arm-pulls
satisfies

RT ≤ CT0
1

γ5.18
+ (1 + ln(2KT lnT ))3/2

√
Tdm∗ +

√
T .

The parameter γ > 0 is the minimum magnitude of the non-zero coordinate of β∗, i.e.,
γ = min{|β∗

i | : β∗
i 6= 0}.

In order to parse the above theorem, the following corollary is presented.

Corollary 4. Suppose Algorithm 4 is run with input parameters δ ∈ (0, 1), and T0 =
Õ
(
d2 ln2

(
1
δ

))
given in Equation (16) , then with probability at-least 1 − δ, the regret after

T times satisfies

RT ≤ O

(
d2

γ5.18
ln2(d/δ)τ2 ln

(
TK

δ

))
+ Õ(

√
Td∗m).

Proof of Theorem 6. The proof proceeds identical to that of Theorem 5. Observe from
Lemmas 3 and 4, that the choice of T0 is such that for all phases i ≥ 1, the estimate

P

[
‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤ δ

2i
. Thus, from an union bound, we can conclude that

P

[
∪i≥4‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤ δ

4
.

Thus at this stage, with probability at-least 1− δ
2 , the following events holds.

• supt∈[0,T ],a∈A ‖φM (xt, a)‖2 ≤ b(δ)

• ‖β̂i−1 − β∗‖∞ ≤ 2−i, for all i ≥ 10.

Call these events as E . As before, let γ > 0 be the smallest value of the non-zero coordinate

of β∗. Denote by the phase i(γ) := max
(
10, log2

(
2
γ

))
. Thus, under the event E , for all

phases i ≥ i(γ), the dimension dMi = d∗m, i.e., the SupLinRel is run with the correct set of
dimensions.

It thus remains to bound the error by summing over the phases, which is done identical
to that in Theorem 5. With probability, at-least 1− δ

2 −
∑

i≥4 δi ≥ 1− δ,

RT ≤
i(γ)−1∑

j=0

(
36jT0 + 6j

√
T0

)
+

⌈
log36

(

T
T0

)

⌉

∑

j=i(γ)

Regret(SupLinRel)(36iT0, δi, dMi,b(δ))

+

⌈
log36

(

T
T0

)

⌉

∑

j=i(γ)

6j
√

T0,
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where Regret(SupLinRel)(36iT0, δi, dMi,b(δ)) ≤ C(1+ln(2K36iT0 ln 36
iT0))

3/2
√

36iT0dMi +

2
√

36iT0. This expression follows from Theorem 6 in Auer (2002). We now use this to
bound each of the three terms in the display above. Notice from straightforward calcula-
tions that the first term is bounded by 2T036

i(γ) and the last term is bounded above by

36⌈
√
T0⌉6log36

(

T
T0

)

respectively. We now bound the middle term as

⌈
log36

(

T
T0

)

⌉

∑

j=i(γ)

Reg(SupLinRel)(36jT0, δi, d
∗
m, b(δ))

≤ b(δ)




⌈
log36

(

T
T0

)

⌉

∑

j=i(γ)

C(1 + ln(2K36iT0 ln 36
iT0))

3/2
√
36iT0dMi + 2

√
36iT0




.

The first summation can be bounded as
⌈
log36

(

T
T0

)

⌉

∑

j=i(γ)

C(1 + ln(2K36iT0 ln 36
iT0))

3/2
√

36iT0dMi

≤

⌈
log36

(

T
T0

)

⌉

∑

j=i(γ)

C(1 + ln(2KT lnT ))3/2
√

36iT0d∗m,

= C1(1 + ln(2KT lnT ))3/2
√

Td∗m,

and the second by
⌈
log36

(

T
T0

)

⌉

∑

j=i(γ)

2
√

36iT0 ≤ C1

√
T .

Thus, with probability at-least 1− δ, the regret of Algorithm 4 satisfies

RT ≤ 2T036
i(γ) + C(1 + ln(2KT lnT ))3/2

√
Td∗m + C2

√
T ,

where i(γ) := max
(
10, log2

(
2
γ

))
. Thus,

RT ≤ CT0
2

γ5.18
+ C(1 + ln(2KT lnT ))3/2

√
Td∗m + C1

√
T ,

as 36 ≤ 25.18
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Thodoris Lykouris, Karthik Sridharan, and Éva Tardos. Small-loss bounds for online learn-
ing with partial information. arXiv preprint arXiv:1711.03639, 2017.

James McInerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues Bouchard,
Alois Gruson, and Rishabh Mehrotra. Explore, exploit, and explain: personalizing ex-
plainable recommendations with bandits. In Proceedings of the 12th ACM conference on
recommender systems, pages 31–39, 2018.

Brendan McMahan and Jacob Abernethy. Minimax optimal algorithms for unconstrained
linear optimization. In Advances in Neural Information Processing Systems, pages 2724–
2732, 2013.

Min-hwan Oh, Garud Iyengar, and Assaf Zeevi. Sparsity-agnostic lasso bandit. arXiv
preprint arXiv:2007.08477, 2020.

Francesco Orabona. Simultaneous model selection and optimization through parameter-
free stochastic learning. In Advances in Neural Information Processing Systems, pages
1116–1124, 2014.

Aldo Pacchiano, Christoph Dann, Claudio Gentile, and Peter Bartlett. Regret bound
balancing and elimination for model selection in bandits and rl. arXiv preprint
arXiv:2012.13045, 2020a.

Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup Rao, Julian Zimmert,
Tor Lattimore, and Csaba Szepesvari. Model selection in contextual stochas-
tic bandit problems. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-
can, and H. Lin, editors, Advances in Neural Information Processing Sys-
tems, volume 33, pages 10328–10337. Curran Associates, Inc., 2020b. URL
https://proceedings.neurips.cc/paper/2020/file/751d51528afe5e6f7fe95dece4ed32ba-Paper.pdf.

Rajat Sen, Alexander Rakhlin, Lexing Ying, Rahul Kidambi, Dean Foster, Daniel Hill, and
Inderjit Dhillon. Top-k extreme contextual bandits with arm hierarchy. arXiv preprint
arXiv:2102.07800, 2021.

David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal
algorithm for contextual bandits under realizability, 2020.

Aleksandrs Slivkins. Introduction to multi-armed bandits. arXiv preprint arXiv:1904.07272,
2019.

Vladimir Vapnik. Estimation of dependences based on empirical data. Springer Science &
Business Media, 2006.

39

https://proceedings.neurips.cc/paper/2020/file/751d51528afe5e6f7fe95dece4ed32ba-Paper.pdf


Ghosh, Sankararaman and Ramchandran—2021

Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Solving a mixture of many
random linear equations by tensor decomposition and alternating minimization. CoRR,
abs/1608.05749, 2016. URL http://arxiv.org/abs/1608.05749.

40

http://arxiv.org/abs/1608.05749

	1 Introduction
	1.1 Our Contributions
	2 Related Work
	3 Problem Setup
	3.1 Preliminaries
	4 Model Selection for General Contextual Bandits
	4.1 Algorithm—Adaptive Contextual Bandits (ACB)
	4.2 Analysis of ACB
	4.3 A Simple Explore-Then-Commit (ETC) Algorithm for Model Selection
	4.4 Regret Guarantee of ETC

	5 General Contextual Bandits with Infinite Function Classes


	6 Model Selection in Stochastic Linear Bandits
	6.1 Model Selection for Continuum (infinite) Arm Stochastic Linear bandits
	6.1.1 Setup
	6.1.2 Algorithm: Adaptive Linear Bandits (Dimension) [ALB-Dim] 
	6.1.3 Regret Guarantee

	6.2 Dimension as a Measure of Complexity - Finite Armed Setting
	6.2.1 Setup
	6.2.2 ALB-Dim Algorithm
	6.2.3 Regret Guarantee


	7 Comparison Study: ACB vs. ALB-DIM for Finite Armed Stochastic Linear Bandits
	8 Numerical Experiments
	A Model Selection for Contextual Bandits
	A.1  Proof of Lemma 1
	A.2 Proof of Theorem 1
	A.3 Proof of Lemma 2
	A.4 Proof of Theorem 2
	A.5 Proof of Theorem 3 
	A.6 Proof of Theorem 4
	B Model Selection for Linear Stochastic bandits
	B.1 Proof of Theorem 5


	C ALB-Dim for Stochastic Contextual Bandits with Finite Arms
	C.1 ALB-Dim Algorithm for the Finite Armed Case
	C.2 Regret Guarantee for Algorithm 4



