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Introduction

Emerging trends in networking bring about new design challenges

Large scale wireless networks Data .Networks

Multiple Operators Diversity Community Detection
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Contents of the Talk

1. Dynamics on Wireless Networks

Proposal - A Spatial Birth-Death Wireless Network Model
Today - Interference Queueing Networks

2. Graph Clustering

Proposal - Motivation and Broad Introduction .
Today - Community Detection on Euclidean Random Graphs

3. Diversity in multi-operator cellular networks

Theme -
Questions of interest
Tractable Models
Insights




Community Detection

A.S,Francois Baccelli, Community Detection on Euclidean Random Graphs, In ACM-SIAM
Symposium of Discrete Algorithms (SODA) 2018

A.S, Emmanuel Abbe, Francois Baccelli, Community Detection on Euclidean Random
Graphs, Full Version. Under Review at IMA Information and Inference

https://arxiv.org/abs/1706.09942




Community Detection - Abstract Definition

- Grouping objects given indirect information of memberships

@
@ ® partitioned into groups
® o ®

A population




Community Detection - Examples

- Grouping objects given indirect information of memberships

®
@ ® ®
A population ® ® partitioned into groups T
® o ® o

B v X
1. People on an Online Social Network Q #




Graph as Information

Important sub-class

Population - Represented as nodes of a graph

Meh

|

bership Inforn

|

ation - Encoded as labeled edges of the graph

Graph Clustering Problem -

Given an unlabeled graph data, recover the partition of nodes



Graph Clustering

Fundamental theoretical problem

Statistics, CS, Physics, Information Theory, Mathematics

tat 4 f
Well established applications- ] ?E'#f’ _
Social Networks (Targeted Advertising) ! = i

Recommendation Systems (Users and tems)
[Linden,Smith and York ‘03][Sahebi and Cohen ‘11]

Genomics (Similar genes)
[Jiang, Tang and Zhang ‘04]



Graph Clustering

Given an unlabeled graph data, recover the partition of nodes




Graph Clustering

Given an unlabeled graph data, recover the partition of nodes

What if there are additional contextual information on each node ?

Web-pages, the textual content in a page
Social Networks - Personal information (age, location, income....)

Computational Biology - Metadata generated by measurements



Outline

1) Model - The Planted Partition Random Connection Model
2) Algorithm
3) Mathematical Results

4) Application - Haplotype Phasing
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1) N, ~ Poisson(An)number of nodes
On avg X points per unit area.
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1) N, ~ Poisson(An)number of nodes
On avg X points per unit area.

2) Each node i € |1, N,|, has a
nl/d 1/d
- Location label X; ¢ [— 55 ]

sampled independently and uniformly



Planted Partition Random Connection Model

10

V1

1) N, ~ Poisson(An)number of nodes
On avg X points per unit area.

2) Each node i € |1, N,|, has a
nl/d p1/d
2 7 2 ]
- Community label Z; ¢ {—1,+1}

- Location label X, c [—

sampled independently and uniformly
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Planted Partition Random Connection Model

I .
—o 1) N,, ~ Poisson(An)number of nodes
. On avg X points per unit area.
® /1 .
2) Each node i € |1, N,|, has a
nl/d p1/d
\ ° - Location label X; [— 5 5 ]
° - Community label Z; € {—1,+1}

sampled independently and uniformly

3) Edge between i, € [1, N,,] with probability either

finllXs = X511) - If Z; = Z; (same colors) V7 =0, fin(r) = four(r)

More edges within
communities than across.

fout (|| Xi = X;l]) - If z, £ 7z, (different colors)

Conditional on node labels, edges are independent
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Planted Partition Random Connection Model

1) {X;}ien - @ Poisson Point Process on R? with intensity \

2) Independently mark it {Z; }icn each of which is uniform over {-1,1}

3) Connect any two nodes i ~ j € N with probability
fin(l|1Xi = X;|[)1z,=2; + four ([ Xi — X;l[)1z,22z, independently for all pairs

nl/d nl/d] d

* M G,2G restrictedto [,
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Planted Partition Random Connection Model

Model Parameters
A >0 Intensity

d > 2 Dimension of embedding

fin(')afout(’) :R—I— — [Oa 1] S.t Vr Z 0 9 fzn(,r) Z fout(r)

1 b - fzn(r)

\\ . —  Sout(r)
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Planted Partition Random Connection Model

Assume /R fout(HxII)d:r:S/ fin(l|z]])dz < 00
rERI

rcR4

Avg # of neighbors in

- same community is - (A/2)/€Rd fin([|z[|)dz — o(1)
- opposite community is -()\/QV Four(|lz])dz — o(1)
xERY
T
o——9

. ¥ Constant avg degree




Community Detection Problem

14

V1

Given G, and {X;}ico,n,), estimate {Z; }icj1, N,

{7i}iejo,n.]- Community estimates
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Community Detection Problem

I Given G,, and {Xi}ic[o,n,], estimate {Zz'}z'e[l,Nn]

* V1 . .
{7i}iejo,n.]- Community estimates

1| oz
) \ O, = N ZZz'Tv;
=1

overlap of the estimator

O, :=| Fraction of correctly classified nodes - Fraction of incorrectly classified nodes |
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Community Detection Problem

I —o Given G, and {Xi}iE[O,Nn], estimate {Z’i}iE[l,Nn]
° \/ﬁ " "
K’ {7i bic[o,Nn)- Community estimates
® | N,
o \ O, = N Z Z;7;|  overlap of the estimator
Jn =1
O, :=| Fraction of correctly classified nodes - Fraction of incorrectly classified nodes |

Community Detection is solvable if there exists an estimator {7;},c10 v, ]
for every n, and some v > 0 s.t. lim P[O, > 1] =1

n—oo

Tz'Zi
Np,

Ny,
SLLN gives ) — 0 for blind guessing
I=1

Solvability =~ asymptotically beating a random guess



Community Detection Problem

15

>r



15

Community Detection Problem

>r

Isolated Nodes = No interaction with other points

Clearly O < 1 — e~ Ma(HR 1

v4(1) Vol of unit ball in d dimensions



What was previously known ?

106

A lot of work on the Stochastic Block Model (SBM)

2 symmetric communities -

[Mossel, Neeman, Sly ’15][Mossel, Neeman, Sly '13][Massoulie” 14]

Efficient algorithm, whenever it is information theoretically possible

Explicit closed form formulas for such an threshold

Unfortunately their techniques do not work,
- our model not locally tree like

How to exploit the knowledge of spatial locations J\




Algorithm ldea
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Spatial graph - Locally dense but globally sparse




Algorithm ldea
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Spatial graph - Locally dense but globally sparse

Consider the example fin(r) = al,<r , fout(r) =bl,<r
0<b<a<l

>



Algorithm Idea Y

Spatial graph - Locally dense but globally sparse

Consider the example fin(r) = al,<r , fout(r) =bl,<r
0<b<a<l

>

Locally Dense - ‘Nearby nodes connect with constant probability independent of n

Globally Sparse - Order n edges in total

/]

7

Spatial Graph SBM
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Algorithm ldea

# common neighbors is Poisson with mean

2

Same community - Ac(a) R <

Opposite communities - Ac(a) R%ab
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Algorithm ldea

# common neighbors is Poisson with mean

2

Same community - Ac(a) R (

Opposite communities - Ac(a) R%ab

i [a+0b ’
Setthreshold -  T'(a) = c(a) R\ :

Pairwise-Classify(x.y)

IF # (common neighbors) < T(a), DECLARE community(x) = community(y)

ELSE DECLARE

community(x) # community(y)
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Algorithm ldea

# common neighbors is Poisson with mean

2

Same community - Ac(a) R (

Opposite communities - Ac(a) R%ab

i [a+0b ’
Setthreshold -  T'(a) = c(a) R\ :

Pairwise-Classify(x.y)

IF # (common neighbors) < T(a), DECLARE community(x) = community(y)

ELSE DECLARE

community(x) # community(y)

Chernoff bound -

P(Mis-classifying a given pair of nodes at distance aR ) < e—Ac/(a)R



Algorithm ldea

19

Tesselate R into grids of side R/4

Classify cells to be Good or Bad



Algorithm Idea "

Tesselate R into grids of side 2/4  Classify cells to be Good or Bad

Cell Good if
« ©° * 1. At-least (1 — ¢) Mean # of nodes
° 2. No inconsistencies in pairwise
o e . checks with all neighboring cells
) o -~
o o
®| o °
o o

| Same Different
Example of Inconsistent output

Same



Algorithm ldea

20

Tesselate R? into grids of side R/4

Classity cells to be Good or Bad

Cell Good if

1. At-least (1 — ¢) Mean # of nodes
2. No Inconsistencies in pairwise
checks with all neighboring cells

Same Different

Example of Inconsistent output

Same



Algorithm ldea

21

Main Routine
- Partition each good component with Pairwise-Classify

- Output +1 estimate to all nodes in bad cells




Algorithm Idea 3

Main Routine
- Partition each good component with Pairwise-Classify

- Output +1 estimate to all nodes in bad cells

P ® ° o o
¢ ® ®le *
® ® ® o
¢ [* ¢ ° . ®* . : . Algorithm succeeds if a “large”
s connected component of “gray”
. e | ° - cells is present
o ¢ ® o ® o | o ¢
) ol o — . ® . ® : o “
o« ° ) ® e . |
° ® ° ° ®

A k-Dependent Percolation Process. [Liggett, Schonmann, Stacey, '97]



Solvability Phase Transition

22

An overlap of 7Y is achievable if there exists an estimator {Ti}f\ﬁl

such that lim P|O; >~] =1



Solvability Phase Transition

22

An overlap of 7Y is achievable if there exists an estimator {7'7;}7];\211

such that lim P|O; >~] =1

Solvability iff any v > 0 is achievable



Solvability Phase Transition =

An overlap of 7Y is achievable if there exists an estimator {7'7;}7];\;”’1

such that lim P|O; >~] =1
Solvability iff any v > 0 is achievable

~

)\1 >\2 A

# of nodes N,, ~ Poisson(An)



Solvability Phase Transition =

Theorem - YV f;,,(+), fout(+),d > 2, 30 < A1 < A2 < oo such that -
A < A1 = Community Detection is not solvable

A > Ao = Our algorithm solves Community Detection efficiently

~

)\1 >\2 A

# of nodes N,, ~ Poisson(An)

Our algorithm is asymptotically optimal.



Haplotype Assembly
An Application of Euclidean Community Detection

A.S, Haris Vikalo, Francois Baccelli, Haplotype Phasing and Community Detection,
In Préparation



Haplotype Assembly - Problem

20

Reconstruct the string from noisy measurements



Haplotype Assembly - Problem

20

Reconstruct the string from noisy measurements

S

S

C



Haplotype Assembly - Problem

20

Reconstruct the string from noisy measurements

01101110 110001101 8
10010001001110010 s

Each paired-read consists of

e The underlying string s or s° that is unknown
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Reconstruct the string from noisy measurements

S

10010001001110010 s

Each paired-read consists of
e The underlying string s or s° that is unknown

e A set of locations that is known
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Reconstruct the string from noisy measurements
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10010001001110010 s

Each paired-read consists of
e The underlying string s or s° that is unknown
* A set of locations that is known
* Noisy measurement of the unknown chosen string at the known
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Haplotype Assembly - Problem

20

Reconstruct the string from noisy measurements

S

10010001001110010 s

Each paired-read consists of
e The underlying string s or s° that is unknown
* A set of locations that is known
* Noisy measurement of the unknown chosen string at the known

chosen locations

Read 1 - Positions - 2,10 Values:000,011



Haplotype Assembly - Problem

20

Reconstruct the string from noisy measurements

Read 1
Read 2
Read 3
Read 4

Read m

Positions
Positions
Positions
Positions

Positions

2,10 Values:000,011
4,11 Values:00,01

1,9 Values:0010,01101
2,11 Values:00011,01

21,40. Values:0,01100



Haplotype Assembly - Problem o

Reconstruct the string from noisy measurements

Fundamental and challenging problem in computational genomics
Binary alphabet - long history

We consider the general case of multiple strings and multiple alphabets



Haplotype Assembly - Problem -

Reconstruct the string from noisy measurements

At all positions, not all strings are identical

Fundamental and challenging problem in computational genomics
Binary alphabet - long history

We consider the general case of multiple strings and multiple alphabets



Proposed Algorithm

29

Each read is a node of a weighted spatial graph

Read i - Positions - 2,10 Values:000,011

The unknown string - ‘community label’

The set of positions - ‘location label’

10 ........




Proposed Algorithm

29

Each read is a node of a weighted spatial graph

Read i - Positions - 2,10 Values:000,011
Read j - Positions - 4,11 Values:01,101

The unknown string - ‘community label’

The set of positions - ‘location label’

11 .............. :

1T S 10 4{-------- :




Proposed Algorithm =

Each read is a node of a weighted spatial graph

Read i - Positions - 2,10 Values:000,011
Read j - Positions - 4,11 Values:01,101

The unknown string - ‘community label’

The set of positions - ‘location label’

_ #£Sites the reads agrees on — #5ites the reads differs

Wij #Total number of overlapping sites
2—1 . .
Wij =577 Overlapping Sites = {4, 10,11}
1 : n




Proposed Algorithm >

1) Create the weighted spatial graph
2) Euclidean Community Detection

3) Each position in each string estimated by a majority of all reads estimated to be
originating from the string in consideration and covering the position

u(.2) ............. Z;
~_ ##Sites the reads agrees on — #5Sites the reads difters J /
P = #Total number of overlapping sites ’U,(Q) [........ .
( . .
Zi
(1) 4,2 L

o j (1) ,,(1)

T A S [



Proposed Algorithm

31

1000 A

900 A

800 A

700 A

600 -

500 -

400 -

300 A

0 100 200 300 400 500 600 700

Benchmark simulation data with 4 strings and string length 700.



Prior Work >

AltHaP - [Hashemi, Zhu and Vikalo ’18]

State of art and the first algorithm to handle multiple strings and alphabet
sizes

Poses the problem as noisy tensor completion

Ignores the spatial representation of data. Thus, computationally expensive !

Our algorithm has an Implicit ‘reqularizer’ to force that all strings at all locations are uniformly
sampled by reads



Haplotype Assembly - Results >

Performance Runtime
® ComDet m AltHap B ComDet time ®m AltHap time
o 1000
j=
100 S 750
O
o %
0 50 £ 200
© e 250
g E
5 7 10 15 o 5 7 10
Coverage Coverage

Ploidy = 3, Alphabet size = 4, Error Rate in reads = 0.01



Haplotype Assembly - Results >

Runtime

Performance
B ComDettime m AltHap time
m ComDet m AltHap
—~ 800
o 600
100 &
- 400
o
a 50 £ 200
© =
= 0
0 o 5 7 10 15
5 7 10 15
Coverage
Coverage

Ploidy = 4, Alphabet size = 4, Error Rate in reads = 0.05



Haplotype Assembly - Results >

CPR Runtime
B ComDet ® AltHap B ComDettime B AltHap time

125 800

100 2 600

o /5 S 400
&)
S 50 3

o 200
25 £

0 = 0

5 7 10 15 5 7 10
Coverage Coverage

Ploidy = 3, Alphabet size = 4, Error Rate in reads = 0.002



. 36
Conclusions

First step towards Euclidean Community Detection

Some recent improvements

[Abbe and Boix ’18], [Polyanskiy and Wu ’18], [Alaoui and Montanari ‘19]
Open Mathematical Problems -

1) Unknown number of communities

2) Heterogeneous densities for the various communities
3) Characterization of the hardness of the problem
(Phase Transitions and Statistical/Computational gaps)

4) Apply the method to other problems involving paired-end reads



Spatial Dynamics for Wireless Networks

A.S,Francois Baccelli and Sergey Foss, Interference Queueing Networks on Grids,
In Annals of Applied Probability (To Appear)

A.S and Francois Baccelli, Spatial Birth-Death Wireless Networks,
In IEEE Transactions on Information Theory, 2017




Ad-Hoc Wireless Networks

38

Networks without a centralized infrastructure

Examples -
1) Overlaid Device-to-Device (D2D) Networks




38

Ad-Hoc Wireless Networks

Networks without a centralized infrastructure

Examples -
1) Overlaid Device-to-Device (D2D) Networks

C -~
bl Smart Glasses

. . smart hnger \ Yl (ﬁil
2) Internet of Things - Sensors and monitors . > A
‘\“",’ N

Smat i
Eracalet

P
rd N
/ N
@i
[
: \ J
\ F
i . o
|
i
|
|
' —
| |
| |
i |
|
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i
e e —————
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',/ -
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\‘ '!
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]
Babyy Contral : o
- - !
'/ N :
\ f ) Ca Blustooth
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Smart Belt /N
TN, \
P | 8 |
/
| - | \ W/
\ /
smart P

Smart Shees

Wireless devices everywhere ! B
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Wireless Spectrum is a space-time shared resource

Spatial Component - Interference @



Spatio-Temporal Dynamics

39

Wireless Spectrum is a space-time shared resource

Spatial Component - Interference @

Temporal Component - Traffic Patterns
time 4 I
I -
Youl ) =

2"_1_._ o

Understanding scalability properties of simple protocols
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Scalability

Protocol - A link transmits whenever they have a file by treating interference as noise

Increasing Time "‘ ‘)
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Scalability

Protocol - A link transmits whenever they have a file by treating interference as noise

Does performance of a typical link deteriorate with increasing network size |S|?

No := Scalability

ol

/

(Time =1)

I

\4

Increasing Time -~
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Scalability

Protocol - A link transmits whenever they have a file by treating interference as noise

Does performance of a typical link deteriorate with increasing network size |S|?

No := Scalability

Long Range Space-Time correlations can disrupt scalability

ol

/

(Time =1)

I

v

Increasing Time -~
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Scalability

Protocol - A link transmits whenever they have a file by treating interference as noise

Does performance of a typical link deteriorate with increasing network size |S|?

No := Scalability

Long Range Space-Time correlations can disrupt scalability

Scalability hard to infer from ‘brute force’ ray tracing simulations

ol

/

(Time =1)

I

v

Increasing Time -~
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Scalability

Protocol - A link transmits whenever they have a file by treating interference as noise

Does performance of a typical link deteriorate with increasing network size |S|?

No := Scalability

Long Range Space-Time correlations can disrupt scalability

Scalability hard to infer from ‘brute force’ ray tracing simulations

Infinite Network - A tractable model to address such questions

analogous to the Ising Model S

ol

/

(Time =1)

I

v

Increasing Time -~
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Wireless Dynamics on Grids

Protocol - A link transmits whenever they have a file by treating interference as noise

Discrete Space - d dimensional grid
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Wireless Dynamics on Grids

Protocol - A link transmits whenever they have a file by treating interference as noise

Discrete Space - d dimensional grid

Each wireless link (Tx-Rx pair) is abstracted as a point

Links (points) ‘arrive’ uniformly in space and transmit

Links exit after completion of a file transfer



. . . 41
Wireless Dynamics on Grids

Protocol - A link transmits whenever they have a file by treating interference as noise

Discrete Space - d dimensional grid

Each wireless link (Tx-Rx pair) is abstracted as a point

Links (points) ‘arrive’ uniformly in space and transmit

Links exit after completion of a file transfer

Instantaneous rate of transfer - Linearization of Shannon capacity formula

Interference as Noise



A warm up to the Model

42

z;—1(t) (1) Tit1(?)
z;(t) € N Number of links in cell : € Z at time t > 0

{%‘(t)}iez Queue lengths at time ¢ > 0
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A A A A A

e

z;—1(t) (1) Tit1(?)
z;(t) € N Number of links in cell : € Z at time t > 0

{%‘(t)}iez Queue lengths at time ¢ > 0

Independent Poisson Arrivals
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A warm up to the Model

A A A A A A

e |

z;—1(t) (1) Tit1(?)
z;(t) € N Number of links in cell : € Z at time t > 0

{ﬁi(t)}iez Queue lengths at time ¢ > 0

Independent Poisson Arrivals
x;(¢)

Rate of departure from queue 7 € Z attime ¢ 21 (1) + 2 (t) + 241 ()

If ‘neighboring’ queues are large, instantaneous departure rate is small.



Rate of Departure - SIR
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d
{zi(t) }ieze € N Queue Lengths
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Rate of Departure - SIR

d
{zi()}ieze € N*' Queue Lengths

Interference Sequence {a; } ;<74

0 >0Viezd  a=a,Viez'  L=sup{|lillx:a>0} <o
apgp — 1
Positivity Symmetry Finite Support

Interference at queue i - Z a;z;—j(t)
jezd

1

iezd GjTi—j(t)

SIR at a customer in queue 7 at time ¢ S



Rate of Departure - SIR +

d
{zi()}ieze € N*' Queue Lengths

Interference Sequence {a; } ;<74

0 >0Viezd  a=a,Viez'  L=sup{|lillx:a>0} <o
apgp — 1
Positivity Symmetry Finite Support

Interference at queue i - Z a;z;—j(t)
jezd

1

iezd GjTi—j(t)

SIR at a customer in queue 7 at time ¢ S

iy (t)

Rate of departure from any queue 7 at time ¢
Zjezd a;x;—j(t)

Translation Invariant in Space



Interference Queueing Dynamics

44

44

’

Rate of departure from queue i € Z at time ¢ S
J

(2;(t)}ieze € N%° Queue lengths at time ¢ > 0

Independent rate \ Poisson arrivals

(1)

czd AjLi—j ()

If ‘neighboring’ queues are large, instantaneous departure rate is small.

In the toy example, a; = 1if |¢| < 1and a; = 0 otherwise



Interference Queueing Dynamics

45

¢ & b

(2;(t)}ieze € N%° Queue lengths at time ¢ > 0

—o—¢—o Independent rate \ Poisson arrivals

<
=
—o—9o—0—9¢
o
—

(1)

iezd jTi—j(t)

Rate of departure from queue ¢ € Z at time ¢ S

If ‘neighboring’ queues are large, instantaneous departure rate is small.

Questions -

1) For what \ and {@i};czd, is the process {%i(t)}icza ‘stable’ ?

2) Characterize the steady state ??



Main Results

46

1. Stability

fA)  a; < 1, then system is stable

JEZA



Main Results *

1. Stability

fA)  a; < 1, then system is stable

jeZ4d

2. Moments

Let {y@'}iezd be the minimal stationary solution to the dynamics

A
If A a; <1, then E[y,] =
jezd 1 — )\ZjEZd Clj
2 2
|f )\ng:d a; < g then t[?JO] < O

[Shneer and Stolyar’18] established this for the entire stability range

In upcoming work, we establish exponential moments exist in the entire range



. 47
Intuition

Queue |

Consider any local maximum queue i, i.e. x;(t) = max{z;_;(t) : a; > 0}

>
jezd AjLi—j (t) ZjeZd a;

Its instantaneous departure rate is >

The arrival rate at every queue is A

if A a; <1, then this local maximum queue has negative drift
jend
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Intuition
® Poisson Arrivals of rate A
O Net Arrival rate is* D _ @
O a1 O a1 JEZ
‘ .................... ‘ DV ‘ ‘
® ® ® ® ®

Exponential Rate 1
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Intuition
® Poisson Arrivals of rate A
O Net Arrival rate is* D _ @
® aq ‘ aq Ier
‘ ‘ ................... > ‘ €| . ‘
® ® ® @ ® ®
l Exponential Rate 1

Stability - A 2 @ <1
JEL?
A Zjezd 4 1
Mean Queue Length - 1 —-\> . s.a; > . cpaay

M/M/1 Fraction of solid balls



Monotonicity *

If two initial conditions {z;(0) };cze and {y;(0)};cza s.t. forall i € Z¢

z;(0) < y;(0) , then there exists a coupling such that almost-surely

Vt >0, VieZ z;(t) < y;(t).
t >0

tA
0 —————

Queue
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z;(0) < y;(0) , then there exists a coupling such that almost-surely

Vt >0, VieZ z;(t) < y;(t).
t >0

Proof Induction f
0 A

Queue

Arrivals retain the ordering



Monotonicity *

If two initial conditions {z;(0) };cze and {y;(0)};cza s.t. forall i € Z¢

z;(0) < y;(0) , then there exists a coupling such that almost-surely

Vt >0, VieZ z;(t) < y;(t).

t >0
Proof Induction f
0 A
Arrivals retain the ordering
Queue

Two queues are equal - higher interference system has smaller departure

Unequal queues - Retains ordering as at-most one customer departs



Proof Steps >

A 1. Consider a spatial truncation - finite dimensional

@ O O

0

nT 7 T Y 2.1f M) a; <1 => Stability

® ® ® jEZL
v

Max queue length - Lyapunov function
< . >

3. Rate Conservation Principle

MY ey <1 = Ely] =

jezd

: (1)
_ On(l) Tightness of {yo }nEN
1—A Zjezd aj

4. Switch of limits in time and space  Coupling from the past

5. Monotone Convergence to yield the moment formula



Large Initial Conditions :

Theorem

For every A, there exists a probability distribution on N such that if the
initial condition is {2(0)};cz« i.i.d. from this distribution, then Vi ¢ Z¢

Jim z;(t) = oo almost-surely.



Large Initial Conditions :

Theorem

For every A, there exists a probability distribution on N such that if the
initial condition is {2(0)};cz« i.i.d. from this distribution, then Vi ¢ Z¢

lim z;(t) = oo almost-surely

If “large” frozen boundary is present, then stationary queue length at O is
also “large” with “high probabillity”
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Convergence to Stationary Solutions

O O

® ® ® @ ®
g 0 (

I(ti)ien s.t. t; — oo s.t. Plag(ty) <i] < i

Because of the infinite barrier, all queues diverge to infinity at a linear rate



: : o3
Convergence to Stationary Solutions

® ® ® @ ®
g 0 (

(t;)ien 8.t t; = 00 s.t. Plrg(t;) <] < ;3

Since interested only in finite time ¢;, can bring down the barrier to a finite
value at a small penalty in probabillity



: : o3
Convergence to Stationary Solutions

® ® ® @ ®
g 0 (

3(ti)ien s.t. t; = 0o s.t. Plag(t;) < i) < i°

Since interested only in finite time ¢;, can bring down the barrier to a finite
value at a small penalty in probabillity

Borel-Cantelli to conclude the proof



: 54
Open Questions

If A > a; <1, then what moments of Z¢ oo (0) exists ? How do correlations

JEZ?

decay ? i.e., how does k — E[zoxi] — (E[zo])*decay 2
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No propagation of chaos even in an infinite system !
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Open Questions

Uniqueness of Stationary Solution

Existence/construction of other non-degenerate stationary solutions ?

Convergence to Stationary Solution

Do other initial conditions apart from all empty converge to a stationary
limit ?

Prediction of bad outage events propagating from ‘far out’ in space



Summary of the Talk

56

Two problems in networking

* Introduced new mathematical models and questions

e Demonstrate the effectiveness of the model

Contextual Data in Graph Clustering
Scalability of wireless protocols

* New tools and techniques in the analysis of the proposed models
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Main Proof Idea - Stability

Two systems on B ¢ Z¢ with the same dynamics.
All queues In BL are frozen without activity.

- {wi(t) }iep: the set Bis a torus.

- {z;(t) }iep : the set B has boundary effects.

Interference is lower at the boundaries.




Main Proof Idea - Stability

Two systems on B ¢ Z¢ with the same dynamics.
All queues In BL are frozen without activity.

- {wi(t) }iep: the set Bis a torus.

- {z;(t) }iep : the set B has boundary effects.

Interference is lower at the boundaries.

Vit Vi € B

1) Zl?z(t) > Zz(t)

2) yi(t) > 2i(t)

Monotonicity




Finite Torus System

{yi(t)}icB process on a torus.

Theorem - If 2D 4 <1 | then {vy;(t) };c B is Positive Recurrent and the

jezd

stationary distribution possess exponential moments. Furthermore, the

mean queue length satisfies E[y,(¢)] = . )\£
_ jeza 4j




Finite Torus System

{yi(t)}icB process on a torus.

Theorem - If 2D 4 <1 | then {vy;(t) };c B is Positive Recurrent and the

jezd

stationary distribution possess exponential moments. Furthermore, the

- A
mean queue length satisfies E[y,(¢)] =
[ 0( )] 1 — )\Zjezd a;
Proof Idea of Stability
d A\ Yi Fluid scale equation
Yi =
dt 2 ezt @Y(i—j)/B (1)
Consider the maximal queue " (t) := arg max Y (1)
’ Yir(t) = A MG This h tive drift
g, drR(t) — o IS Nas negative ari
dt”" " zjezd ajyi*(t)—j(t) 9
1
S A < —€ n r boun a stable
> ena Can upper bound by

Single server queue.



Finite Torus System

Rate Conservation - “On Average what comes in is what goes out”.

o(?) 1,0 t)>0
Zjezcl a;y;; s (t) wolt)>

Avg arrival rate equals avg departure rate.

For Ex. A=K

Key ldea:

d
Consider I(?) := yo(?) Z a;y;(t) in stationarity and solve —E[I(t)] = 0

, dt
JjEZ

Average increase due to arrivals - A +A(D_ a;)E[yo(t)]
jeZ4

Average decrease due to departures - E[yo(?)]

( h

A
kl_AZjEZd a/j,

0 p

Equating the two yields E[yo(?)] € <

/



Coupling From the Past

{2;(t)}icB, process where the set B has boundary effects.

Monotonicity => x;(t) > z;(t) and y;(t) > 2;(t)

Thus L [Z() (t)] <

< Uniformly in the size of B
1 — A ZjEZd Q

Consider B,, /' Z* and corresponding stationary z(()n) (0)




Coupling From the Past

Let B, /7% Z(()Z) (0) - the queue length of queue 0 at time 0, when
the truncated B, system is started empty at time -t.

Notice vt >0 lim Z(() t) (0) = x0.¢(0) Corollary of the construction ~ Queues

n—oo
Monotonicity =>
(n) ._ _(n) (n) ._ _(c0)
Jim zg = 2 4, and lim 25 = 2500 @S I8 O
1
We know Ssup E[Z(() M < A v ®
neN 1 — )\Z]EZd a’j ®

thus, [zéosg] < 00




Coupling From the Past

Lemma-If 2D a;< 1 then N € N and d71nv < o0 random such that

JEZL?
LI?();OO(O) — Z(()]gﬂ) a.S. Queues
................................................................................................................................... . O
SN
®
I'n
We know sup E[z{")] < A Thus Elzg . (0)] < 4
neN 1 —A ZjEZd Q 1 - )\ZjEZd @



Monotonicity

If two initial conditions {z;(0) };cze and {y;(0)};cza s.t. forall i € Z¢
2;(0) < yi(0) are coupled with the same driving sequence (A;, D;);cza
thenVt >0, Vi € 7. sz(t) < yz(t)

Proof Induction on events.

Arrivals retain the ordering.

Consider a potential departure event at queue |.

If zi(t) < w:(t)+ 1, then ordering retained as exactly 1 departure.
If x;(t) = y;(t), then the departure probabilities are ordered by
induction hypothesis (1) S yi(t)

D ieza GTioi(t) T D icza aYi—j(t)




Stability Definition - Backward Construction

7. (O) Queue length of i at time 0 given the entire system was started
BEY) empty at time -t

QIueues

Time -t Time O




Stability Definition - Backward Construction

7. (O) Queue length of i at time O given the entire system was started
BEY) empty at time -t

Qfeues Monotonicity => t — z;.:(0) is non-decreasing

T; 50(0) := lim z;4(0) as.
Time -t Time O b0



Stability Definition - Backward Construction

7. (O) Queue length of i at time O given the entire system was started
BEY) empty at time -t

QIueueS Monotonicity => t — z;.:(0) is non-decreasing
T; 50(0) := lim z;4(0) as.
Time -t Time O t—=00

{%; 5 (0)};c7za is a minimal stationary solution to the dynamics.



Stability Definition - Backward Construction

7. (O) Queue length of i at time O given the entire system was started
BEY) empty at time -t

QIueueS Monotonicity => t — z;.:(0) is non-decreasing
T; 50(0) := lim z;4(0) as.
Time -t Time O t—=00

0-1Law P[N;ez4%i00(0) < 00] € {0,1}

If £; 50(0) < 00 a.s. => System is stable

{%; 5 (0)};c7za is a minimal stationary solution to the dynamics.



