Spatial Stochastic Models for Network Analysis

Abishek Sankararaman PhD Defense

Committee

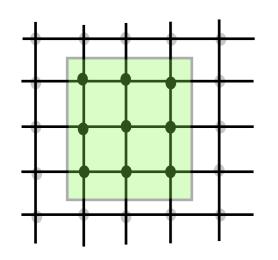
François Baccelli (Advisor)

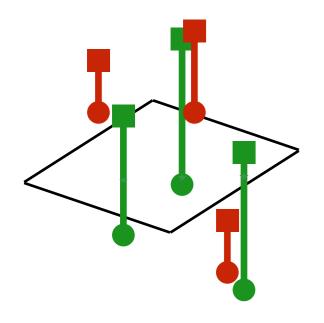
Gustavo deVeciana

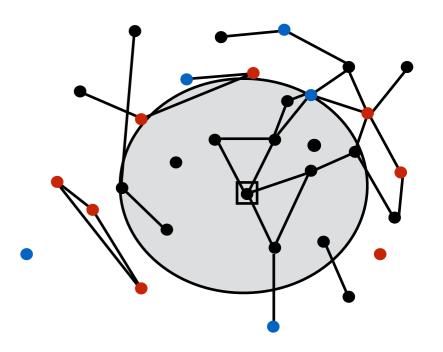
Sanjay Shakkottai

Alex Dimakis

Joe Neeman

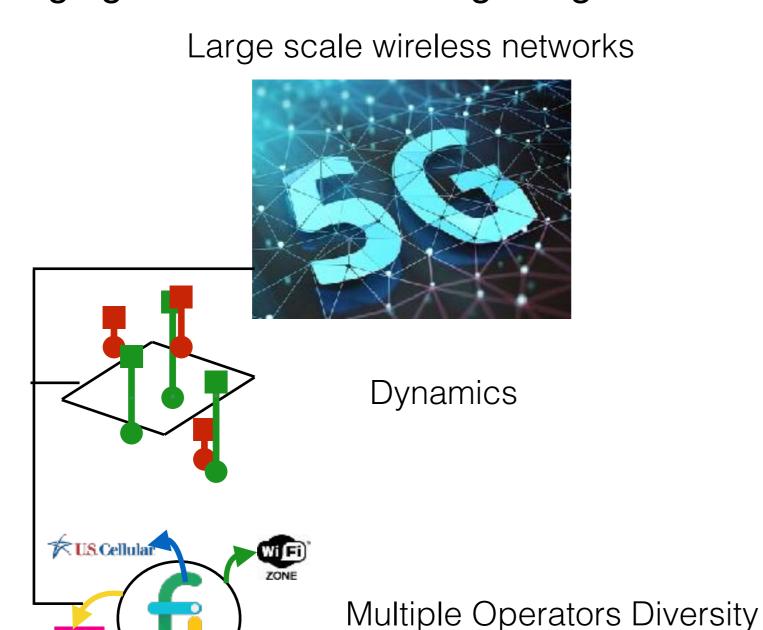


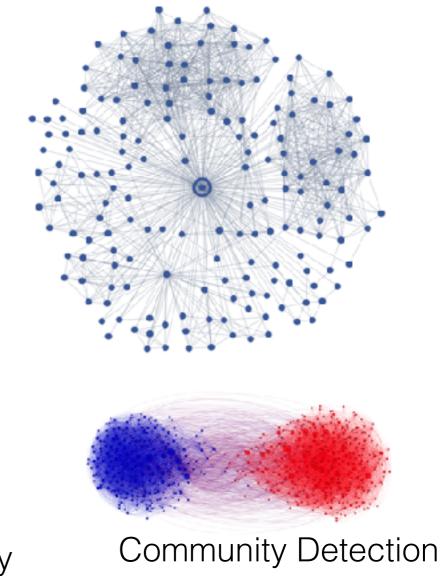




Introduction

Emerging trends in networking bring about new design challenges



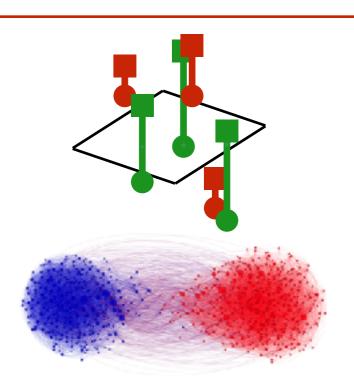


Data Networks

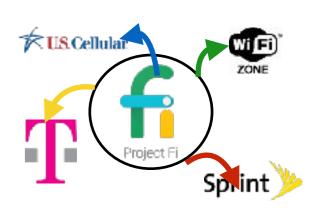
Contents of the Thesis

1. Dynamics on Wireless Networks

2. Graph Clustering



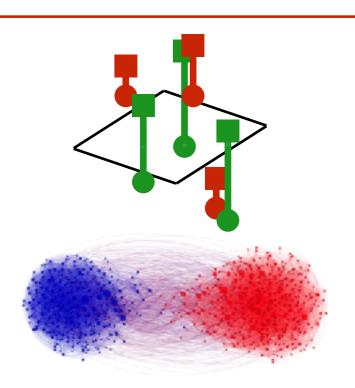
3. Diversity in multi-operator cellular networks



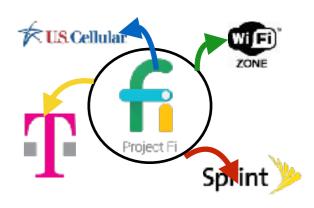
Contents of the Thesis

1. Dynamics on Wireless Networks

2. Graph Clustering



3. Diversity in multi-operator cellular networks



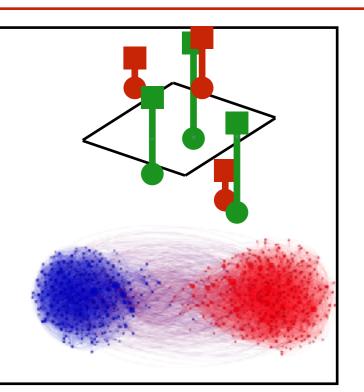
Theme -

- Questions of interest
- Tractable Models
- Insights

Contents of the Thesis

1. Dynamics on Wireless Networks

2. Graph Clustering



3. Diversity in multi-operator cellular networks

Theme -

- Questions of interest
- Tractable Models
- Insights

Contents of the Talk

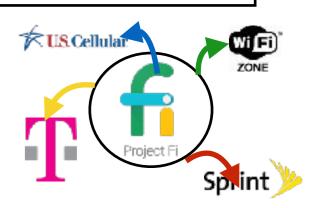
1. Dynamics on Wireless Networks

Proposal - A Spatial Birth-Death Wireless Network Model Today - Interference Queueing Networks

Proposal - Motivation and Broad Introduction

Today - Community Detection on Euclidean Random Graphs

3. Diversity in multi-operator cellular networks



Theme -

- Questions of interest
- Tractable Models
- Insights

Community Detection

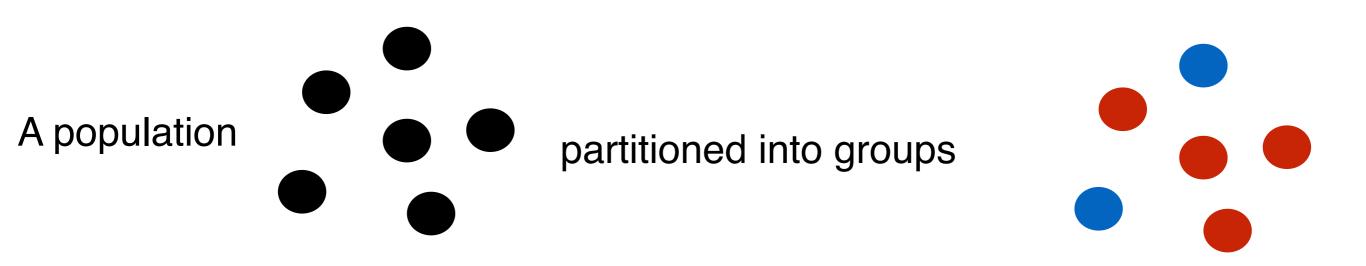
A.S, François Baccelli, *Community Detection on Euclidean Random Graphs,* In ACM-SIAM Symposium of Discrete Algorithms (SODA) 2018

A.S, Emmanuel Abbe, François Baccelli, *Community Detection on Euclidean Random Graphs*, Full Version. Under Review at IMA Information and Inference

https://arxiv.org/abs/1706.09942

Community Detection - Abstract Definition

Grouping objects given indirect information of memberships



Community Detection - Examples

Grouping objects given indirect information of memberships

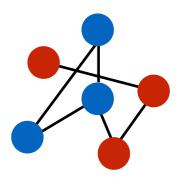
1. People on an Online Social Network

- 2. Proteins classified into groups based on their functional behavior
- 3. Grouping Base-Stations based on similarities in traffic pattern

Graph as Information

Important sub-class

Population - Represented as nodes of a graph



Membership Information - Encoded as labeled edges of the graph

Graph Clustering Problem -

Given an unlabeled graph data, recover the partition of nodes

Graph Clustering

Fundamental theoretical problem

Statistics, CS, Physics, Information Theory, Mathematics

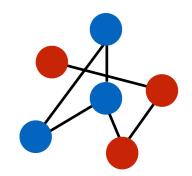


Well established applications-

- Social Networks (Targeted Advertising)
- Recommendation Systems (Users and tems)
 [Linden,Smith and York '03][Sahebi and Cohen '11]
- Genomics (Similar genes)
 [Jiang, Tang and Zhang '04]

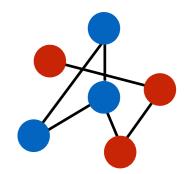
Graph Clustering

Given an unlabeled graph data, recover the partition of nodes



Graph Clustering

Given an unlabeled graph data, recover the partition of nodes



What if there are additional contextual information on each node?

Web-pages, the textual content in a page

Social Networks - Personal information (age, location, income....)

Computational Biology - Metadata generated by measurements

Outline

- 1) Model The Planted Partition Random Connection Model
- 2) Algorithm
- 3) Mathematical Results
- 4) Application Haplotype Phasing

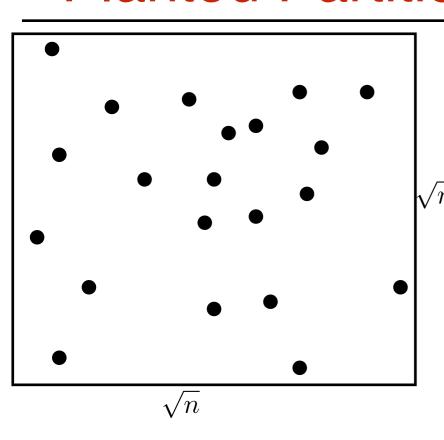
•

1) $N_n \sim \text{Poisson}(\lambda n)$ number of nodes On avg λ points per unit area.

- 1) $N_n \sim \operatorname{Poisson}(\lambda n)$ number of nodes On avg λ points per unit area.
- 2) Each node $i \in [1, N_n]$, has a

- Location label
$$X_i \in \left[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}\right]$$

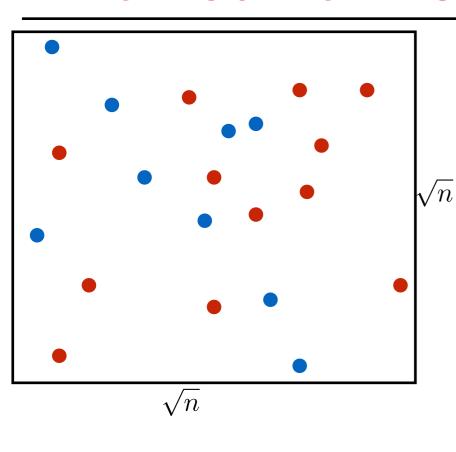
sampled independently and uniformly



- 1) $N_n \sim \operatorname{Poisson}(\lambda n)$ number of nodes On avg λ points per unit area.
- 2) Each node $i \in [1, N_n]$, has a

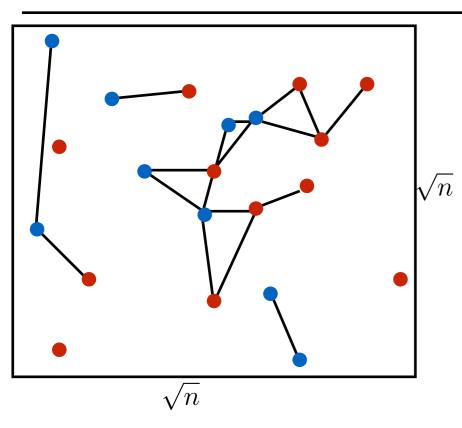
- Location label
$$X_i \in \left[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}\right]$$

sampled independently and uniformly



- 1) $N_n \sim \operatorname{Poisson}(\lambda n)$ number of nodes On avg λ points per unit area.
- 2) Each node $i \in [1, N_n]$, has a
 - Location label $X_i \in \left[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}\right]$
 - Community label $Z_i \in \{-1, +1\}$

sampled independently and uniformly



- 1) $N_n \sim \operatorname{Poisson}(\lambda n)$ number of nodes On avg λ points per unit area.
- 2) Each node $i \in [1, N_n]$, has a
 - Location label $X_i \in \left[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}\right]$
 - Community label $Z_i \in \{-1, +1\}$

sampled independently and uniformly

3) Edge between $i, j \in [1, N_n]$ with probability either

$$f_{in}(||X_i-X_j||)$$
 - If $Z_i=Z_j$ (same colors) $\forall r\geq 0, f_{in}(r)\geq f_{out}(r)$ $f_{out}(||X_i-X_j||)$ - If $Z_i\neq Z_j$ (different colors) $\forall r\geq 0, f_{in}(r)\geq f_{out}(r)$ $f_{out}(||X_i-X_j||)$ - If $Z_i\neq Z_j$ (different colors) $f_{out}(||X_i-X_j||)$ $f_{out}(||X_i-X_j||)$ $f_{out}(||X_i-X_j||)$ - If $Z_i\neq Z_j$ (different colors) $f_{out}(||X_i-X_j||)$ $f_{out}(||X_i-X_j||)$

Conditional on node labels, edges are independent

- 1) $\{X_i\}_{i\in\mathbb{N}}$ a *Poisson Point Process* on \mathbb{R}^d with intensity λ
- 2) Independently *mark* it $\{Z_i\}_{i\in\mathbb{N}}$ each of which is uniform over $\{-1,1\}$
- 3) Connect any two nodes $i \neq j \in \mathbb{N}$ with probability $f_{in}(||X_i X_j||)\mathbf{1}_{Z_i = Z_j} + f_{out}(||X_i X_j||)\mathbf{1}_{Z_i \neq Z_j}$ independently for all pairs



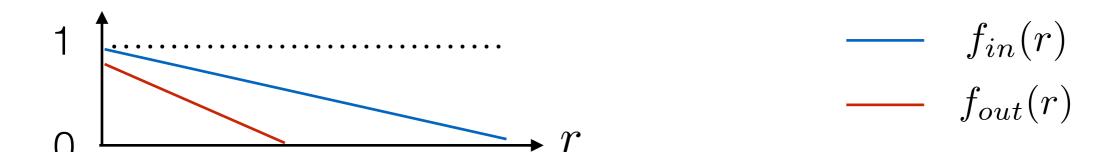
$$G_n \stackrel{d}{=} G$$
 restricted to $\left[-rac{n^{1/d}}{2},rac{n^{1/d}}{2}
ight]^d$

Model Parameters

 $\lambda > 0$ Intensity

 $d \ge 2$ Dimension of embedding

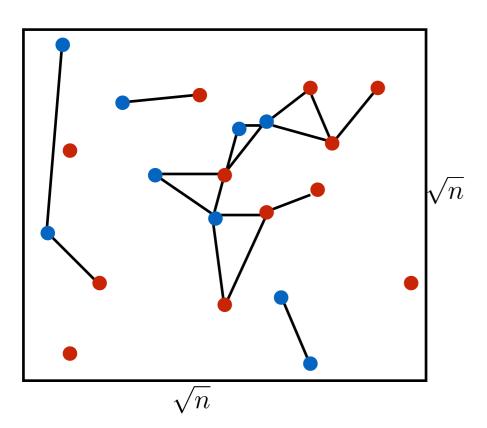
$$f_{in}(\cdot), f_{out}(\cdot) : \mathbb{R}_+ \to [0, 1] \text{ s.t } \forall r \geq 0 , f_{in}(r) \geq f_{out}(r)$$



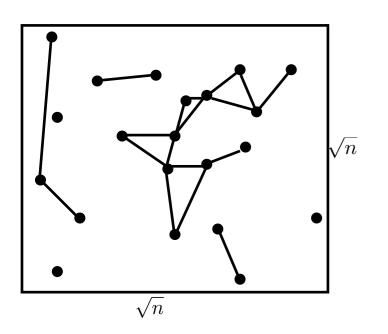
Assume
$$\int_{x \in \mathbb{R}^d} f_{out}(||x||) dx \leq \int_{x \in \mathbb{R}^d} f_{in}(||x||) dx < \infty$$

Avg # of neighbors in

- same community is $-(\lambda/2)\int_{x\in\mathbb{R}^d}f_{in}(||x||)dx-o(1)$ - opposite community is $-(\lambda/2)\int_{x\in\mathbb{R}^d}f_{out}(||x||)dx-o(1)$

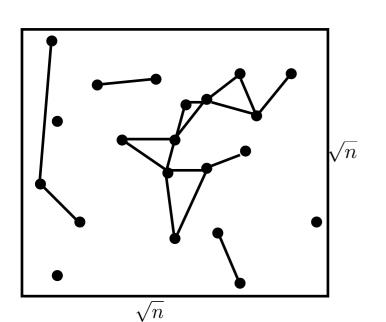


Constant avg degree



Given G_n and $\{X_i\}_{i\in[0,N_n]}$, estimate $\{Z_i\}_{i\in[1,N_n]}$

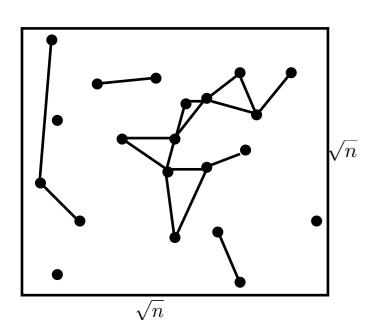
 $\{\tau_i\}_{i\in[0,N_n]}$ - Community estimates



Given G_n and $\{X_i\}_{i\in[0,N_n]}$, estimate $\{Z_i\}_{i\in[1,N_n]}$

$$\{ au_i\}_{i\in[0,N_n]}$$
- Community estimates $\mathcal{O}_{ au}:=\left. egin{array}{c} 1 \ N_n \end{array} \right| \sum_{i=1}^{N_n} Z_i au_i \end{array}
ight| egin{array}{c} ext{overlap} ext{ of the estimator} \end{array}$

 $\mathcal{O}_{\tau}:=|$ Fraction of correctly classified nodes - Fraction of incorrectly classified nodes |



Given G_n and $\{X_i\}_{i\in[0,N_n]}$, estimate $\{Z_i\}_{i\in[1,N_n]}$

$$\{ au_i\}_{i\in[0,N_n]}$$
- Community estimates $\mathcal{O}_{ au}:=\left.egin{array}{c} 1 \ N_n \end{array}
ight|\sum_{i=1}^{N_n} Z_i au_i \end{array}
ight| egin{array}{c} ext{overlap} ext{ of the estimator} \end{array}$

 $\mathcal{O}_{\tau}:=|$ Fraction of correctly classified nodes - Fraction of incorrectly classified nodes |

Community Detection is *solvable* if there exists an estimator $\{\tau_i\}_{i\in[0,N_n]}$ for every n, and some $\,\gamma>0\,$ s.t. $\,\lim\,\,\mathbb{P}[\mathcal{O}_{ au}>\gamma]=1\,$

SLLN gives
$$\sum_{I=1}^{N_n} \frac{\tau_i Z_i}{N_n} \to 0$$
 for blind guessing

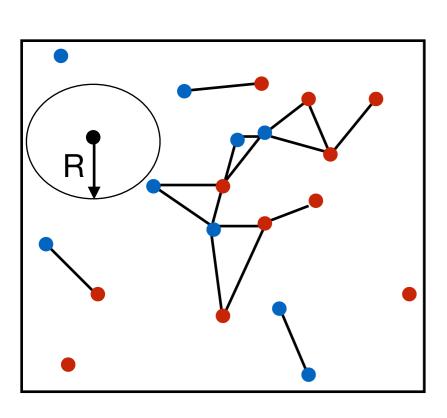
Solvability \approx asymptotically beating a random guess

Consider the example
$$f_{in}(r)=a\mathbf{1}_{r\leq R}$$

$$f_{out}(r)=b\mathbf{1}_{r\leq R}$$

$$0\leq b< a\leq 1$$

Consider the example $f_{in}(r)=a\mathbf{1}_{r\leq R}$ $f_{out}(r)=b\mathbf{1}_{r\leq R}$ $0\leq b< a\leq 1$



Isolated Nodes = No interaction with other points

Clearly
$$\mathcal{O}_{\tau} \leq 1 - e^{-\lambda \nu_d(1)R^d} < 1$$

 $u_d(1)$ Vol of unit ball in d dimensions

What was previously known?

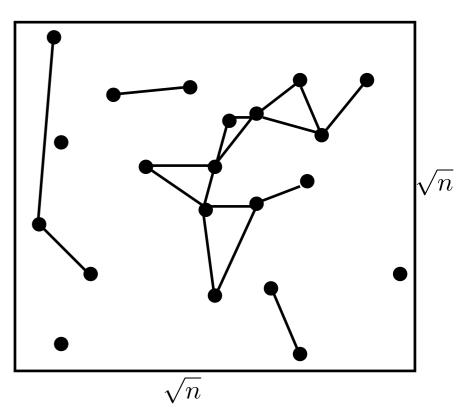
A lot of work on the Stochastic Block Model (SBM)

2 symmetric communities - [Mossel, Neeman, Sly '13][Massoulie' '14]

Efficient algorithm, whenever it is information theoretically possible Explicit closed form formulas for such an threshold

Unfortunately their techniques do not work,our model not locally tree like

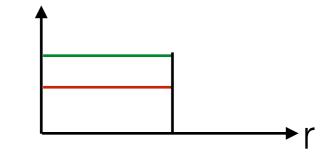
How to exploit the knowledge of spatial locations



Spatial graph - Locally dense but globally sparse

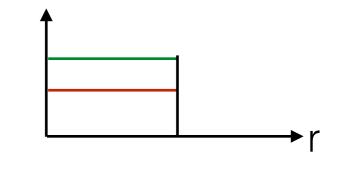
Spatial graph - Locally dense but globally sparse

Consider the example
$$f_{in}(r)=a\mathbf{1}_{r\leq R}$$
 , $f_{out}(r)=b\mathbf{1}_{r\leq R}$
$$0\leq b< a\leq 1$$



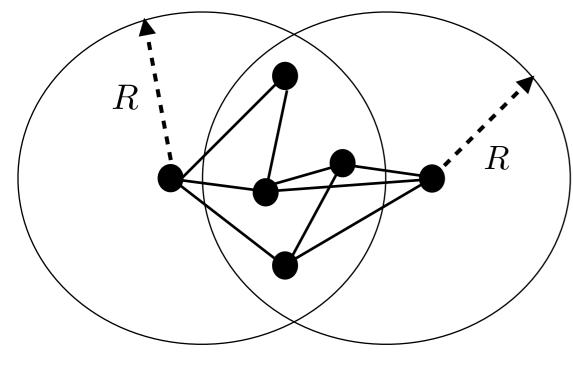
Spatial graph - Locally dense but globally sparse

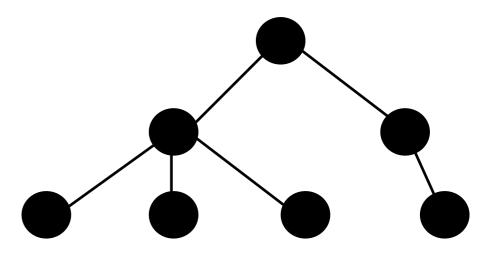
Consider the example
$$f_{in}(r) = a \mathbf{1}_{r \leq R}$$
 , $f_{out}(r) = b \mathbf{1}_{r \leq R}$
$$0 \leq b < a \leq 1$$



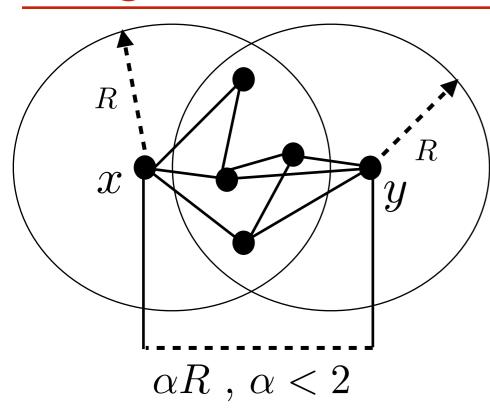
 $\underline{\textit{Locally Dense}}$ - 'Nearby' nodes connect with constant probability independent of n

 $\underline{\textit{Globally Sparse}}$ - Order n edges in total



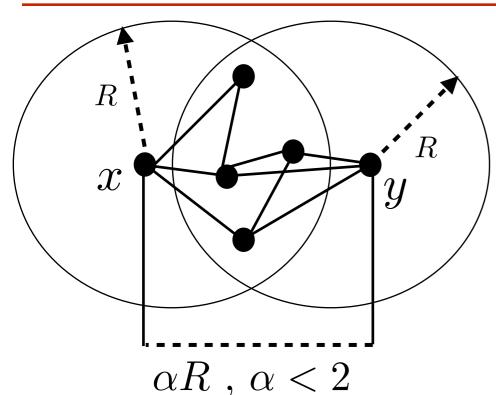


SBM



common neighbors is Poisson with mean

Same community - $\lambda c(\alpha) R^d \left(\frac{a^2 + b^2}{2}\right)$ Opposite communities - $\lambda c(\alpha) R^d ab$



common neighbors is Poisson with mean

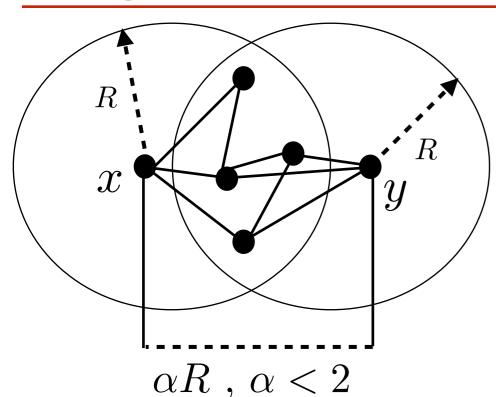
Same community -
$$\lambda c(\alpha) R^d \left(\frac{a^2 + b^2}{2} \right)$$

Opposite communities - $\lambda c(\alpha) R^d ab$

Set threshold -
$$T(\alpha) = c(\alpha) R^d \lambda \left(\frac{a+b}{2}\right)^2$$

Pairwise-Classify(x,y)

- IF # (common neighbors) $< T(\alpha)$, DECLARE community(x) = community(y)
- ELSE *DECLARE* community(x) \neq community(y)



common neighbors is Poisson with mean

Same community -
$$\lambda c(\alpha) R^d \left(\frac{a^2 + b^2}{2} \right)$$

Opposite communities - $\lambda c(\alpha) R^d a b$

Set threshold -
$$T(\alpha) = c(\alpha)R^d\lambda \left(\frac{a+b}{2}\right)^2$$

Pairwise-Classify(x,y)

- IF # (common neighbors) $< T(\alpha)$, DECLARE community(x) = community(y)
- ELSE *DECLARE* community(x) \neq community(y)

Chernoff bound -

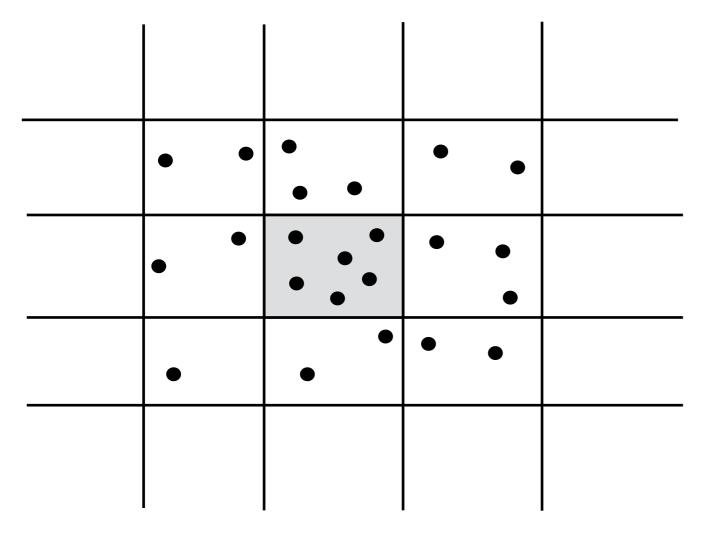
P(Mis-classifying a given pair of nodes at distance αR) $\leq e^{-\lambda c^{'}(\alpha)R}$

Tesselate \mathbb{R}^d into grids of side R/4

Classify cells to be Good or Bad

•	•	•	
•	• •	•	
•	•	•	

Tesselate \mathbb{R}^d into grids of side R/4

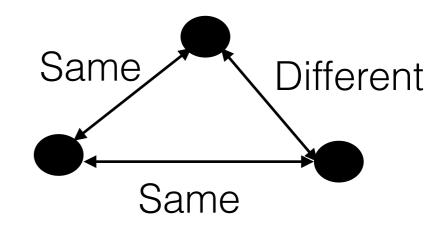


Classify cells to be Good or Bad

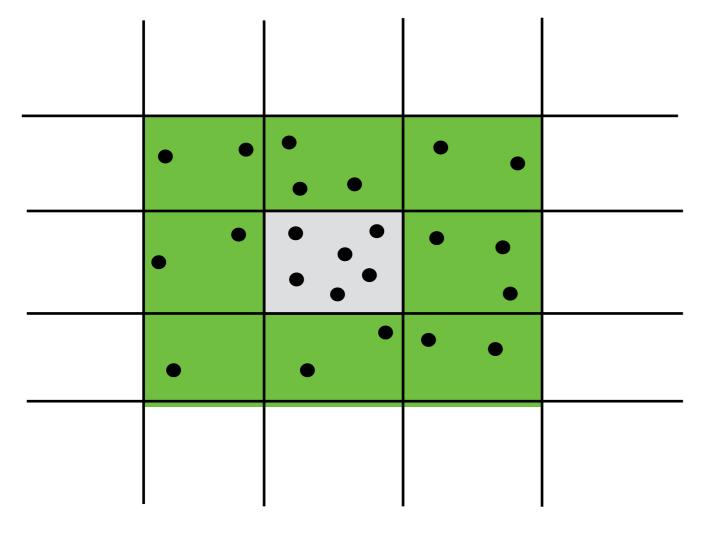
Cell **Good** if

- 1. At-least (1ϵ) Mean # of nodes
- 2. No *inconsistencies* in pairwise checks *with all neighboring cells*

Example of Inconsistent output



Tesselate \mathbb{R}^d into grids of side R/4

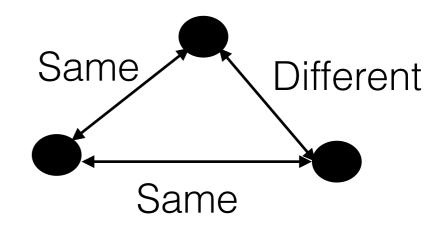


Classify cells to be Good or Bad

Cell *Good* if

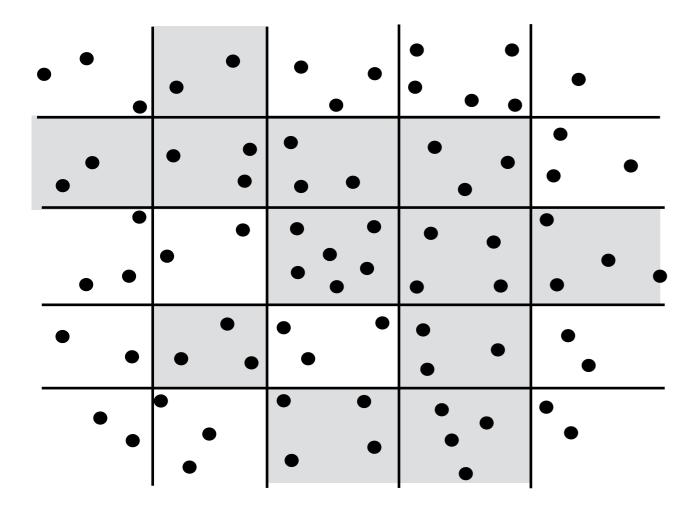
- 1. At-least (1ϵ) Mean # of nodes
- 2. No *inconsistencies* in pairwise checks *with all neighboring cells*

Example of Inconsistent output



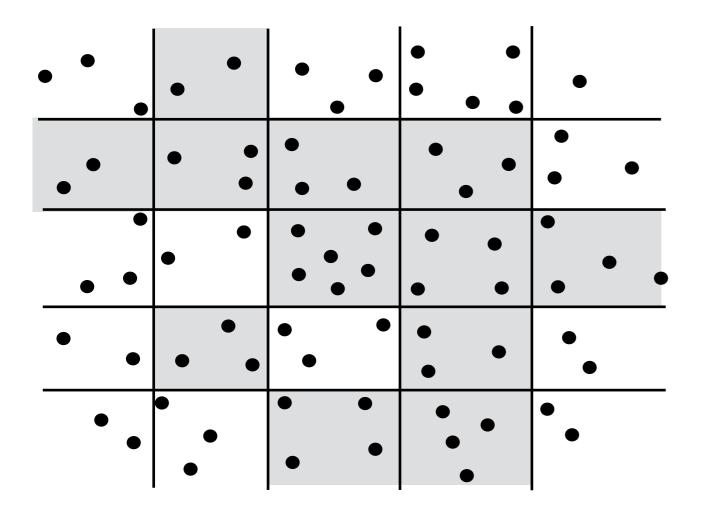
Main Routine

- Partition each good component with Pairwise-Classify
- Output +1 estimate to all nodes in bad cells



Main Routine

- Partition each good component with Pairwise-Classify
- Output +1 estimate to all nodes in bad cells



Algorithm succeeds if a "large" connected component of "gray" cells is present

A k-Dependent Percolation Process. [Liggett, Schonmann, Stacey, '97]

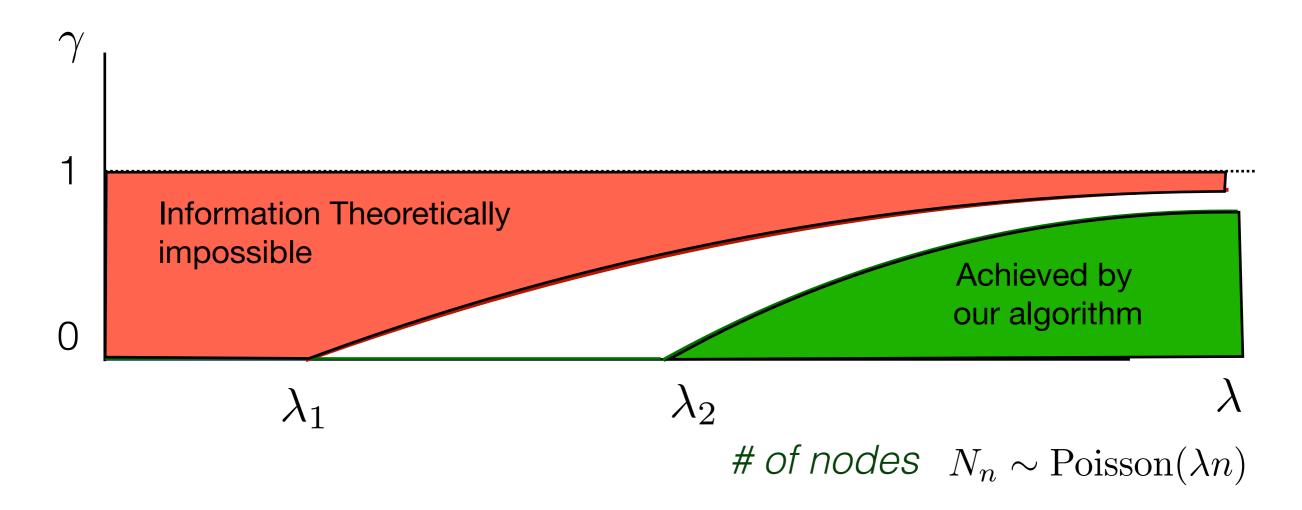
An overlap of γ is *achievable* if there exists an estimator $\{\tau_i\}_{i=1}^{N_n}$ such that $\lim_{n\to\infty}\mathbb{P}[\mathcal{O}_{\tau}>\gamma]=1$

An overlap of γ is *achievable* if there exists an estimator $\{\tau_i\}_{i=1}^{N_n}$ such that $\lim_{n\to\infty}\mathbb{P}[\mathcal{O}_{\tau}>\gamma]=1$

Solvability iff any $\,\gamma>0\,$ is achievable

An overlap of γ is *achievable* if there exists an estimator $\{\tau_i\}_{i=1}^{N_n}$ such that $\lim_{n\to\infty}\mathbb{P}[\mathcal{O}_{\tau}>\gamma]=1$

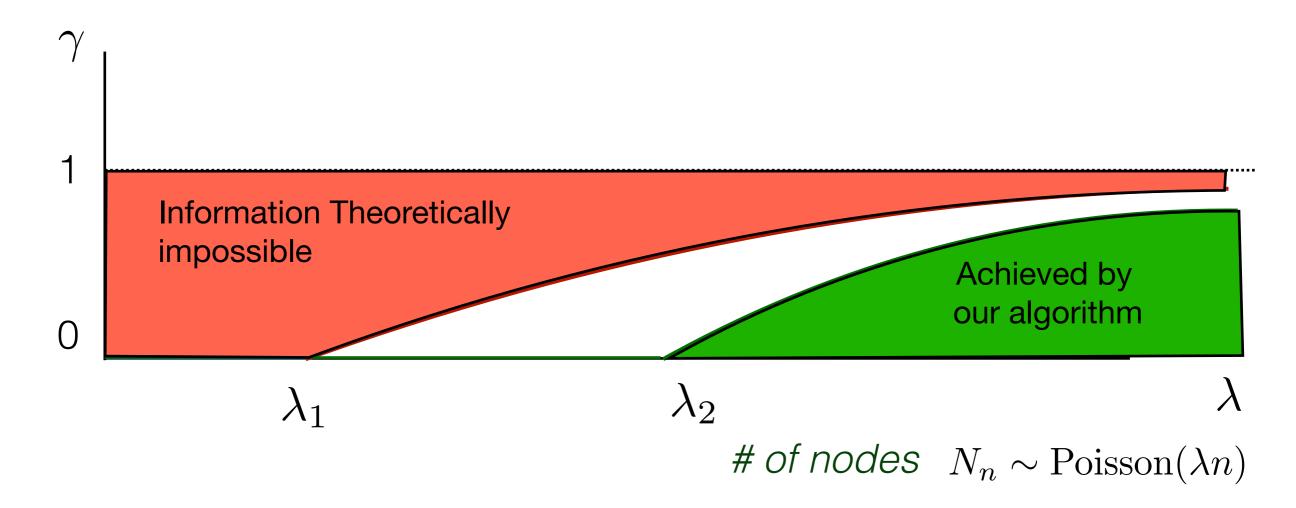
Solvability iff any $\gamma > 0$ is achievable



<u>Theorem</u> - $\forall f_{in}(\cdot), f_{out}(\cdot), d \geq 2$, $\exists 0 < \lambda_1 \leq \lambda_2 < \infty$ such that -

 $\lambda < \lambda_1 \implies$ Community Detection is not solvable

 $\lambda > \lambda_2 \implies$ Our algorithm solves Community Detection efficiently



Our algorithm is asymptotically optimal.

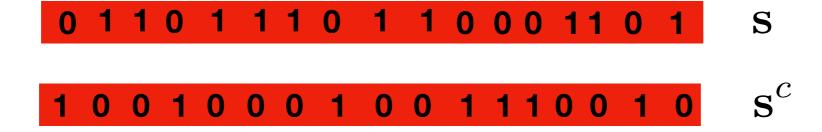
Haplotype Assembly An Application of Euclidean Community Detection

A.S, Haris Vikalo, François Baccelli, *Haplotype Phasing and Community Detection*, In Préparation

Reconstruct the string from noisy measurements

Reconstruct the string from noisy measurements

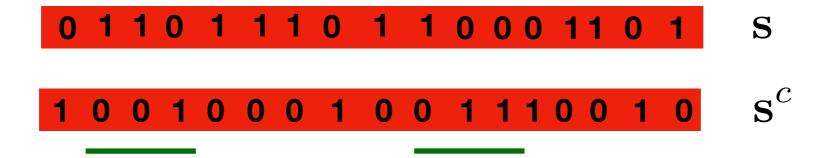
Reconstruct the string from noisy measurements



Each paired-read consists of

ullet The underlying string ${f s}$ or ${f s}^c$ that is unknown

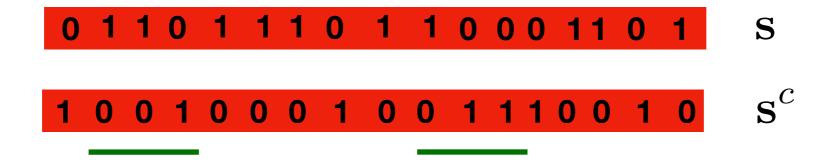
Reconstruct the string from noisy measurements



Each paired-read consists of

- ullet The underlying string ${f s}$ or ${f s}^c$ that is unknown
- A set of locations that is known

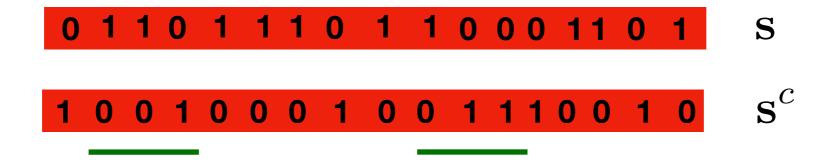
Reconstruct the string from noisy measurements



Each paired-read consists of

- ullet The underlying string ${f s}$ or ${f s}^c$ that is unknown
- A set of locations that is known
- Noisy measurement of the unknown chosen string at the known chosen locations

Reconstruct the string from noisy measurements



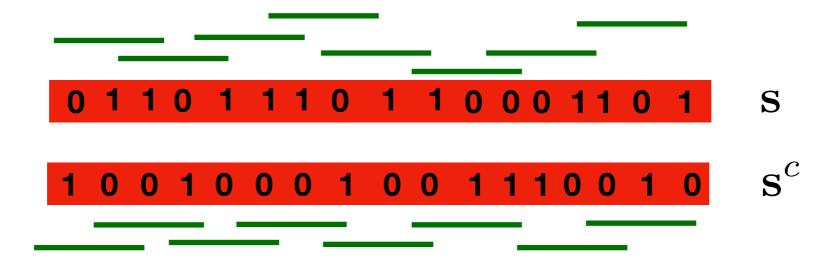
Each paired-read consists of

- ullet The underlying string ${f s}$ or ${f s}^c$ that is unknown
- A set of locations that is known
- Noisy measurement of the unknown chosen string at the known chosen locations

```
Read 1 - Positions - 2,10 Values:000,011
```

Reconstruct the string from noisy measurements

Reconstruct the string from noisy measurements

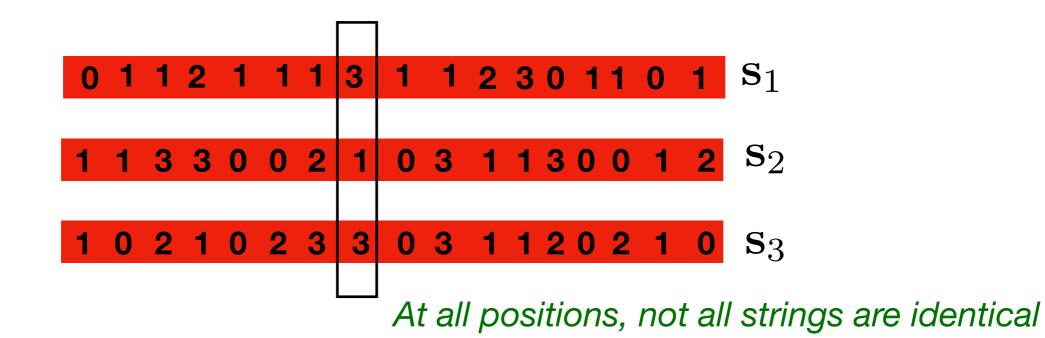


Fundamental and challenging problem in computational genomics

Binary alphabet - long history

We consider the general case of multiple strings and multiple alphabets

Reconstruct the string from noisy measurements



Fundamental and challenging problem in computational genomics

Binary alphabet - long history

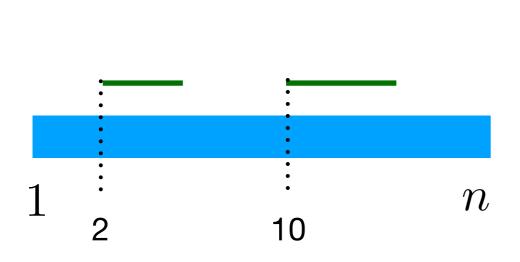
We consider the general case of multiple strings and multiple alphabets

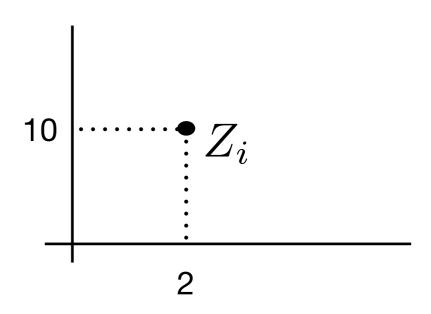
Each read is a node of a weighted spatial graph

Read i - Positions - 2,10 Values:000,011

The unknown string - 'community label'

The set of positions - 'location label'





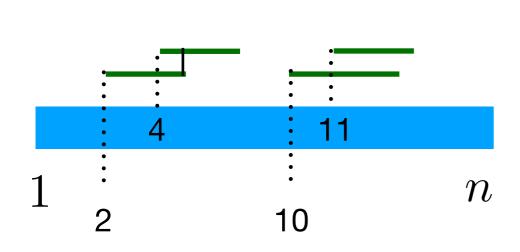
Each read is a node of a weighted spatial graph

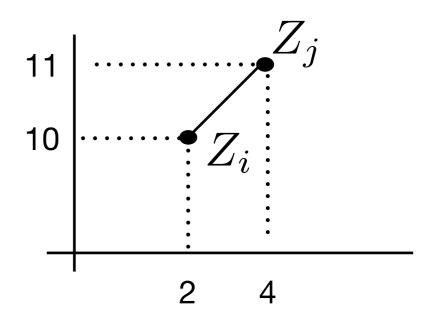
Read i - Positions - 2,10 Values:000,011

Read j - Positions - 4,11 Values:01,101

The unknown string - 'community label'

The set of positions - 'location label'





Each read is a node of a weighted spatial graph

Read i - Positions - 2,10 Values:000,011

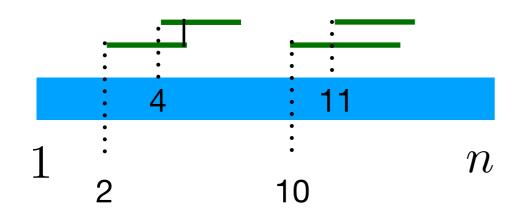
Read j - Positions - 4,11 Values:01,101

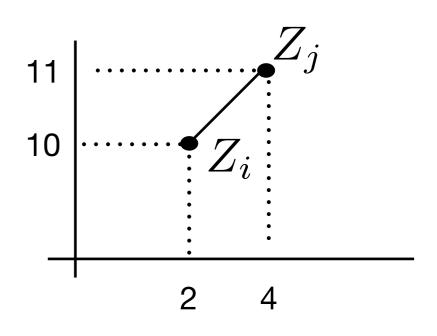
The unknown string - 'community label'

The set of positions - 'location label'

$$w_{ij} = \frac{\text{\#Sites the reads agrees on } - \text{\#Sites the reads differs}}{\text{\#Total number of overlapping sites}}$$

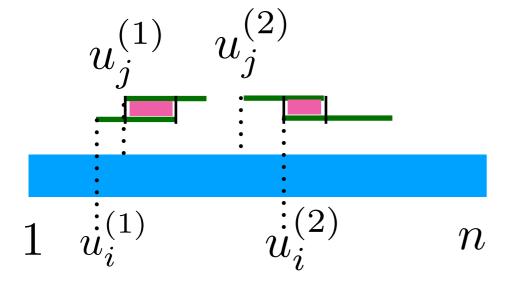
$$w_{ij} = \frac{2-1}{2+1}$$
 Overlapping Sites = $\{4, 10, 11\}$

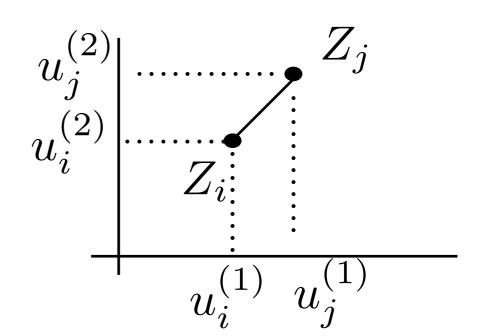




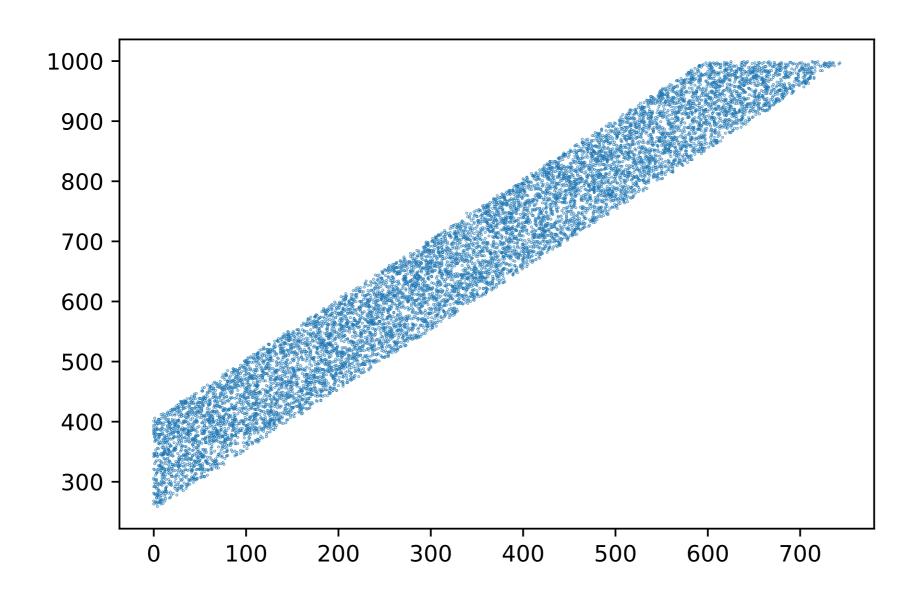
- 1) Create the weighted spatial graph
- 2) Euclidean Community Detection
- 3) Each position in each string estimated by a majority of all reads estimated to be originating from the string in consideration and covering the position

$$w_{ij} = \frac{\text{\#Sites the reads agrees on } - \text{\#Sites the reads differs}}{\text{\#Total number of overlapping sites}}$$





A paired-end read measurement



Benchmark simulation data with 4 strings and string length 700.

Prior Work

AltHaP - [Hashemi, Zhu and Vikalo '18]

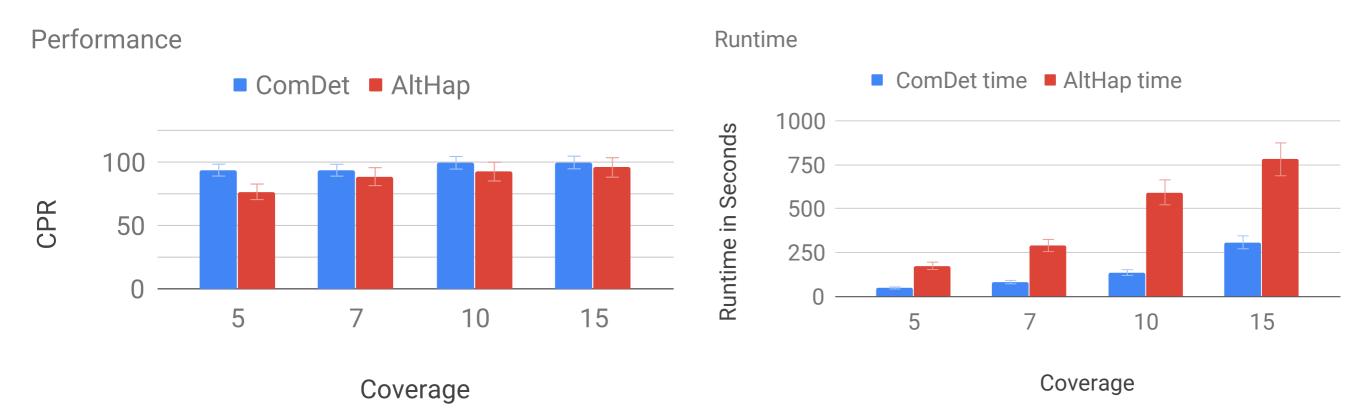
State of art and the first algorithm to handle multiple strings and alphabet sizes

Poses the problem as noisy tensor completion

Ignores the spatial representation of data. Thus, computationally expensive!

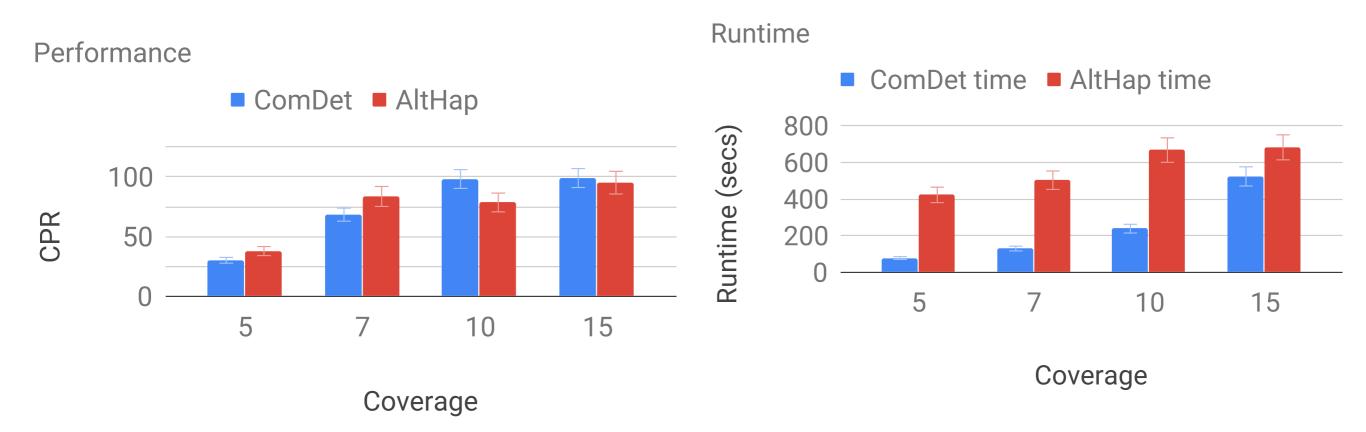
Our algorithm has an Implicit 'regularizer' to force that all strings at all locations are uniformly sampled by reads

Haplotype Assembly - Results



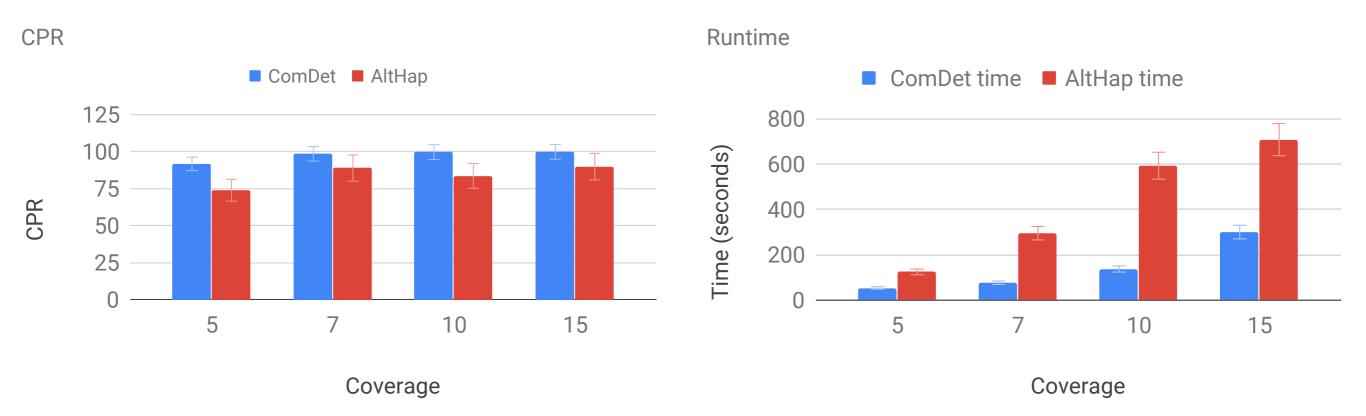
Ploidy = 3, Alphabet size = 4, Error Rate in reads = 0.01

Haplotype Assembly - Results



Ploidy = 4, Alphabet size = 4, Error Rate in reads = 0.05

Haplotype Assembly - Results



Ploidy = 3, Alphabet size = 4, Error Rate in reads = 0.002

Conclusions

First step towards Euclidean Community Detection

Some recent improvements [Abbe and Boix '18], [Polyanskiy and Wu '18], [Alaoui and Montanari '19]

Open Mathematical Problems -

- 1) Unknown number of communities
- 2) Heterogeneous densities for the various communities
- 3) Characterization of the hardness of the problem (Phase Transitions and Statistical/Computational *gaps*)
- 4) Apply the method to other problems involving paired-end reads

Spatial Dynamics for Wireless Networks

A.S, François Baccelli and Sergey Foss, *Interference Queueing Networks on Grids,* In Annals of Applied Probability (To Appear)

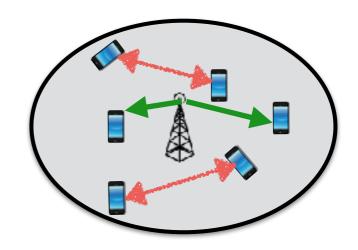
A.S and François Baccelli, *Spatial Birth-Death Wireless Networks*, In IEEE Transactions on Information Theory, 2017

Ad-Hoc Wireless Networks

Networks without a centralized infrastructure

Examples -

1) Overlaid Device-to-Device (D2D) Networks

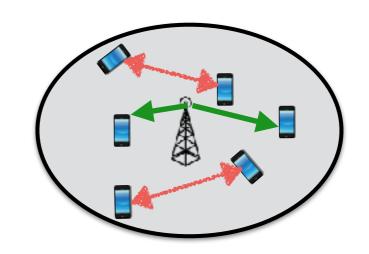


Ad-Hoc Wireless Networks

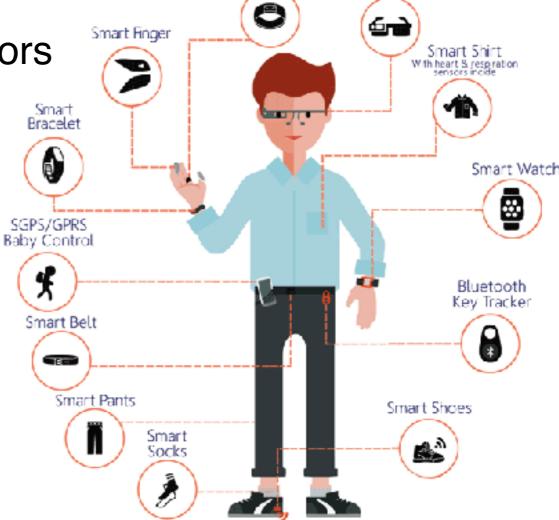
Networks without a centralized infrastructure

Examples -

1) Overlaid Device-to-Device (D2D) Networks



2) Internet of Things - Sensors and monitors



Smart Ring

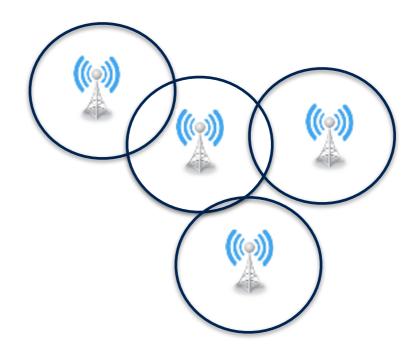
Smart Glasses

Wireless devices everywhere!

Spatio-Temporal Dynamics

Wireless Spectrum is a space-time shared resource

Spatial Component - Interference

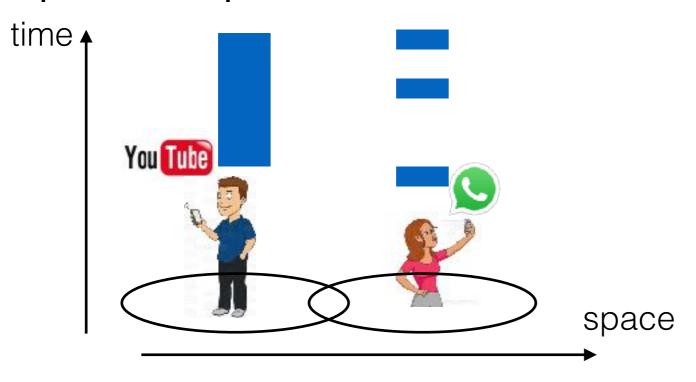


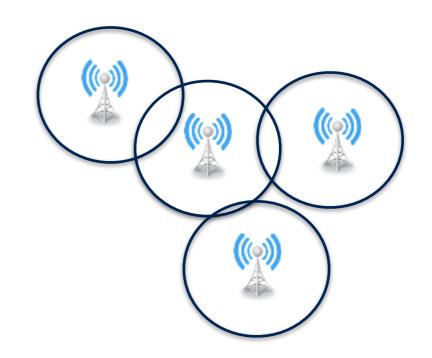
Spatio-Temporal Dynamics

Wireless Spectrum is a space-time shared resource

Spatial Component - Interference

Temporal Component - Traffic Patterns

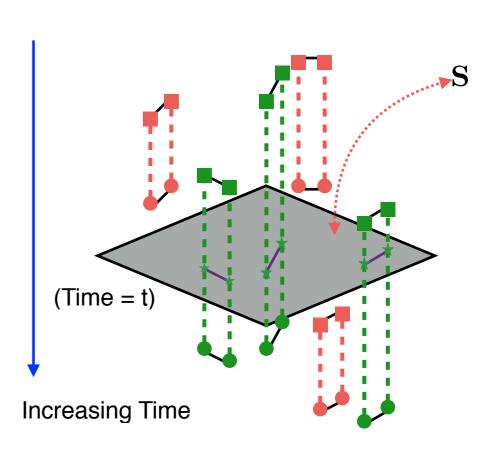




Understanding *scalability* properties of simple protocols

Scalability

Protocol - A link transmits whenever they have a file by treating interference as noise

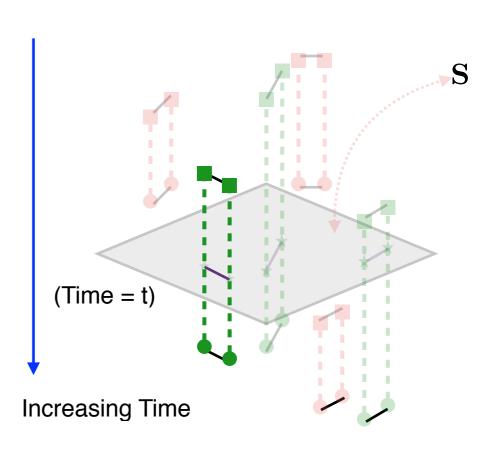


Scalability

Protocol - A link transmits whenever they have a file by treating interference as noise

Does performance of a typical link deteriorate with increasing network size |S|?

No := Scalability



Scalability

Protocol - A link transmits whenever they have a file by treating interference as noise

Does performance of a typical link deteriorate with increasing network size |S|?

No := Scalability

Long Range Space-Time correlations can disrupt scalability



Scalability

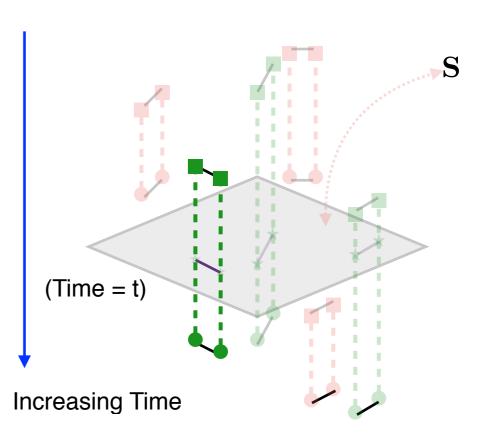
Protocol - A link transmits whenever they have a file by treating interference as noise

Does performance of a typical link deteriorate with increasing network size |S|?

No := Scalability

Long Range Space-Time correlations can disrupt scalability

Scalability hard to infer from 'brute force' ray tracing simulations



Scalability

Protocol - A link transmits whenever they have a file by treating interference as noise

Does performance of a typical link deteriorate with increasing network size |S|?

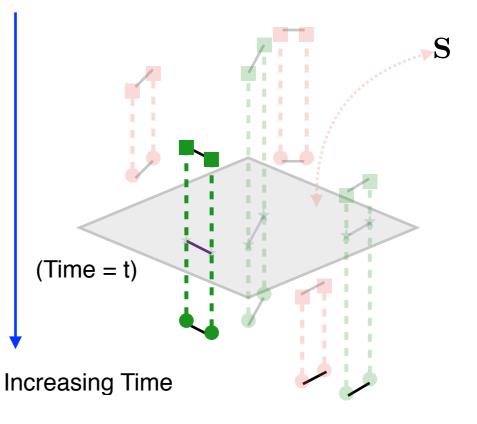
No := Scalability

Long Range Space-Time correlations can disrupt scalability

Scalability hard to infer from 'brute force' ray tracing simulations

Infinite Network - A tractable model to address such questions

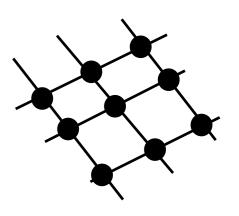
analogous to the Ising Model



Wireless Dynamics on Grids

Protocol - A link transmits whenever they have a file by treating interference as noise

Discrete Space - d dimensional grid



Wireless Dynamics on Grids

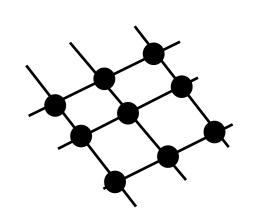
Protocol - A link transmits whenever they have a file by treating interference as noise

Discrete Space - d dimensional grid

Each wireless link (Tx-Rx pair) is abstracted as a point

Links (points) 'arrive' uniformly in space and transmit

Links exit after completion of a file transfer



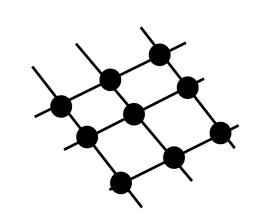
Wireless Dynamics on Grids

Protocol - A link transmits whenever they have a file by treating interference as noise

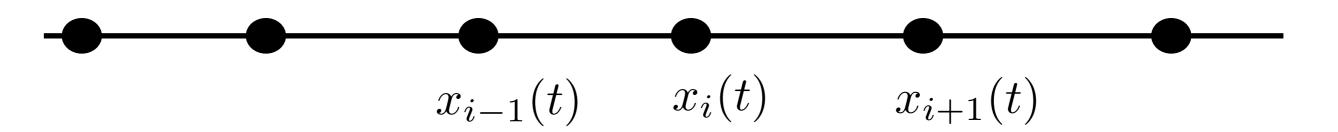
Discrete Space - d dimensional grid

Each wireless link (Tx-Rx pair) is abstracted as a point

Links (points) 'arrive' uniformly in space and transmit



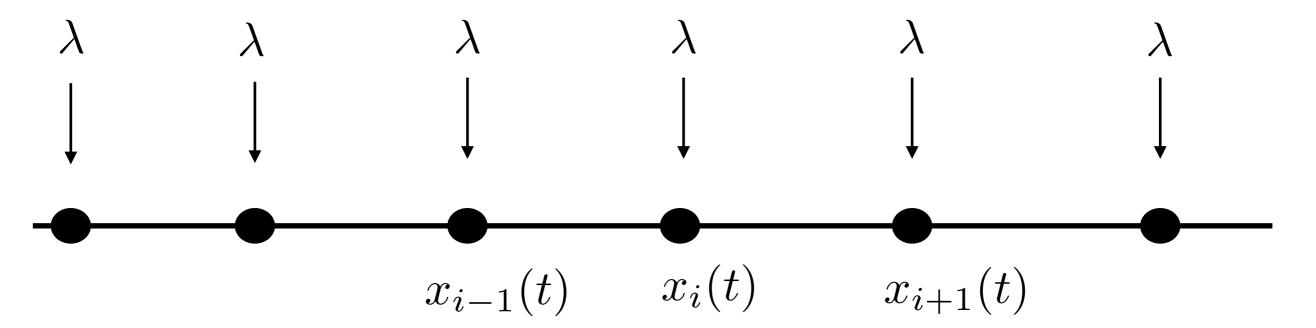
A warm up to the Model



 $x_i(t) \in \mathbb{N}$ Number of links in cell $i \in \mathbb{Z}$ at time $t \ge 0$

 $\{x_i(t)\}_{i\in\mathbb{Z}}$ Queue lengths at time $t\geq 0$

A warm up to the Model



 $x_i(t) \in \mathbb{N}$ Number of links in cell $i \in \mathbb{Z}$ at time $t \geq 0$

 $\{x_i(t)\}_{i\in\mathbb{Z}}$ Queue lengths at time $t\geq 0$

Independent Poisson Arrivals

A warm up to the Model



 $x_i(t) \in \mathbb{N}$ Number of links in cell $i \in \mathbb{Z}$ at time $t \ge 0$

 $\{x_i(t)\}_{i\in\mathbb{Z}}$ Queue lengths at time $t\geq 0$

Independent Poisson Arrivals

Rate of departure from queue $i \in \mathbb{Z}$ at time t

$$\frac{x_i(t)}{x_{i-1}(t) + x_i(t) + x_{i+1}(t)}$$

If 'neighboring' queues are large, instantaneous departure rate is small.

$$\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$$
 Queue Lengths

 $\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$ Queue Lengths

Interference Sequence $\{a_i\}_{i\in\mathbb{Z}^d}$

$$\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$$
 Queue Lengths

Interference Sequence $\{a_i\}_{i\in\mathbb{Z}^d}$

$$a_i \ge 0 \ \forall i \in \mathbb{Z}^d$$
 $a_i = a_{-i} \ \forall i \in \mathbb{Z}^d$ $L = \sup\{||i||_{\infty} : a_i > 0\} < \infty$ $a_0 = 1$

$$a_i = a_{-i} \ \forall i \in \mathbb{Z}^d$$

$$L = \sup\{||i||_{\infty} : a_i > 0\} < \infty$$

Positivity

Symmetry

Finite Support

Interference at queue i
$$-\sum_{j\in\mathbb{Z}^d}a_jx_{i-j}(t)$$

SIR at a customer in queue i at time t $\frac{1}{\sum_{j \in \mathbb{Z}^d} a_j x_{i-j}(t)}$

$$\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$$
 Queue Lengths

Interference Sequence $\{a_i\}_{i\in\mathbb{Z}^d}$

$$\begin{array}{ccc} a_i \geq 0 & \forall i \in \mathbb{Z}^d \\ a_0 = 1 \end{array} \qquad a_i = a_{-i} & \forall i \in \mathbb{Z}^d \end{array}$$

$$a_i = a_{-i} \ \forall i \in \mathbb{Z}^d$$

$$L = \sup\{||i||_{\infty} : a_i > 0\} < \infty$$

Positivity

Symmetry

Finite Support

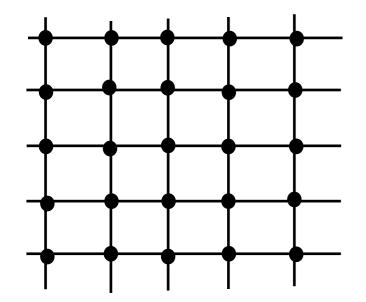
Interference at queue i
$$-\sum_{j\in\mathbb{Z}^d}a_jx_{i-j}(t)$$

SIR at a customer in queue i at time t $\frac{1}{\sum_{j \in \mathbb{Z}^d} a_j x_{i-j}(t)}$

Rate of departure from any queue i at time t

$$\frac{x_i(t)}{\sum_{j\in\mathbb{Z}^d} a_j x_{i-j}(t)}$$

Interference Queueing Dynamics



$$\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$$
 Queue lengths at time $t\geq 0$

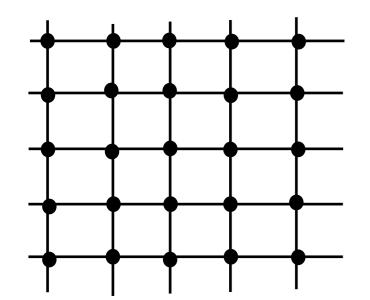
Independent rate λ Poisson arrivals

Rate of departure from queue
$$i \in \mathbb{Z}$$
 at time t $\frac{x_i(t)}{\sum_{j \in \mathbb{Z}^d} a_j x_{i-j}(t)}$

If 'neighboring' queues are large, instantaneous departure rate is small.

In the toy example, $a_i = 1$ if $|i| \le 1$ and $a_i = 0$ otherwise

Interference Queueing Dynamics



 $\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$ Queue lengths at time $t\geq 0$

Independent rate λ Poisson arrivals

Rate of departure from queue $i \in \mathbb{Z}$ at time t $\frac{x_i(t)}{\sum_{j \in \mathbb{Z}^d} a_j x_{i-j}(t)}$

If 'neighboring' queues are large, instantaneous departure rate is small.

Questions -

- 1) For what λ and $\{a_i\}_{i\in\mathbb{Z}^d}$, is the process $\{x_i(t)\}_{i\in\mathbb{Z}^d}$ 'stable'?
- 2) Characterize the steady state ??

Main Results

1. Stability

If
$$\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$$
, then system is stable

Main Results

1. Stability

If
$$\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$$
, then system is stable

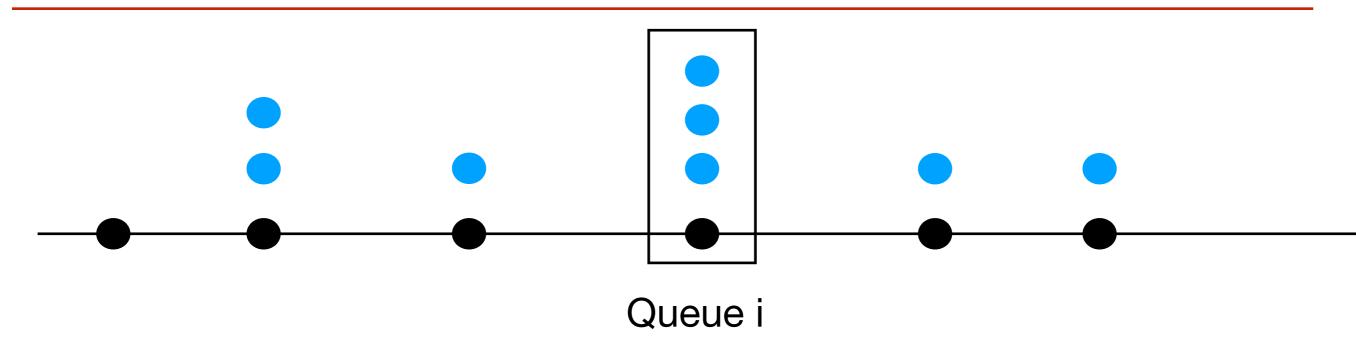
2. Moments

Let $\{y_i\}_{i\in\mathbb{Z}^d}$ be the minimal stationary solution to the dynamics

If
$$\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$$
, then $\mathbb{E}[y_0] = \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j}$
If $\lambda \sum_{j \in \mathbb{Z}^d} a_j < \frac{2}{3}$ then $\mathbb{E}[y_0^2] < \infty$

[Shneer and Stolyar'18] established this for the entire stability range In upcoming work, we establish exponential moments exist in the entire range

Intuition

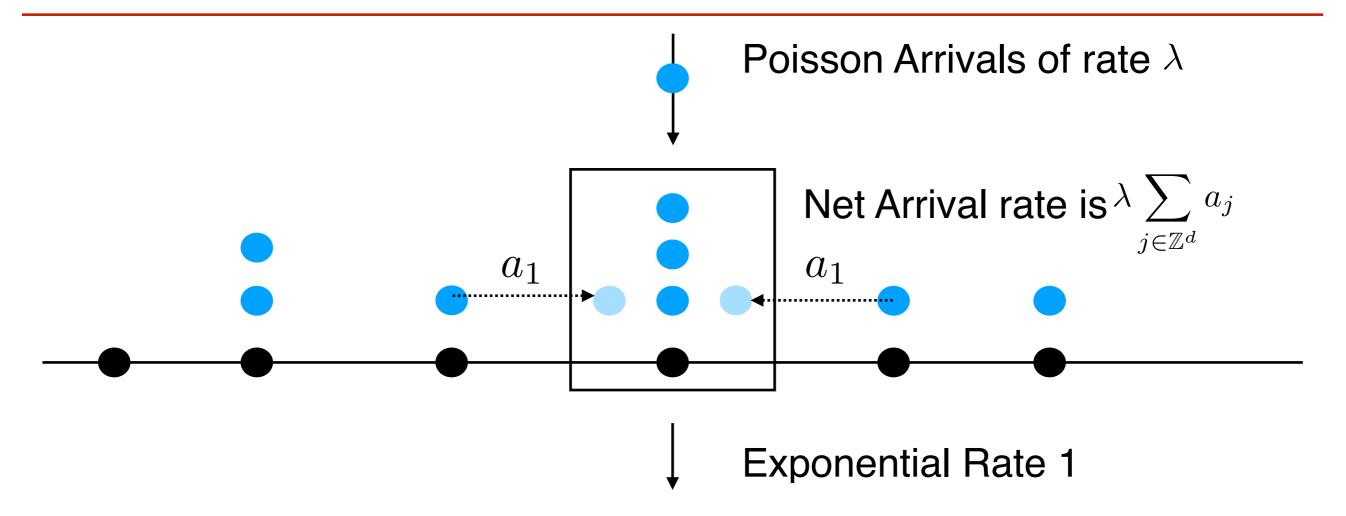


Consider any local maximum queue i, i.e. $x_i(t) = \max\{x_{i-j}(t): a_j > 0\}$ Its instantaneous departure rate is $\frac{x_i(t)}{\sum_{j \in \mathbb{Z}^d} a_j x_{i-j}(t)} \ge \frac{1}{\sum_{j \in \mathbb{Z}^d} a_j}$

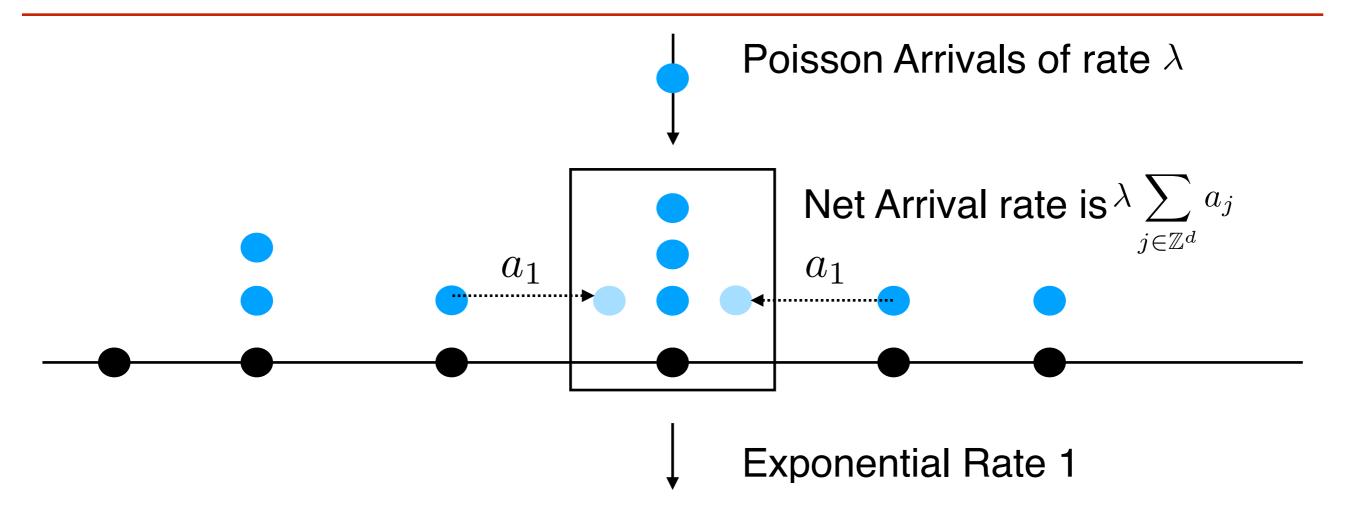
The arrival rate at every queue is λ

if $\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$, then this local maximum queue has negative drift

Intuition



Intuition



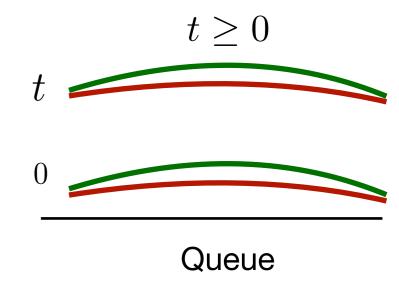
Stability -
$$\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$$

M/M/1

Fraction of solid balls

Monotonicity

If two initial conditions $\{x_i(0)\}_{i\in\mathbb{Z}^d}$ and $\{y_i(0)\}_{i\in\mathbb{Z}^d}$ s.t. for all $i\in\mathbb{Z}^d$ $x_i(0)\leq y_i(0)$, then there exists a coupling such that almost-surely $\forall t\geq 0$, $\forall i\in\mathbb{Z}^d$ $x_i(t)\leq y_i(t)$.

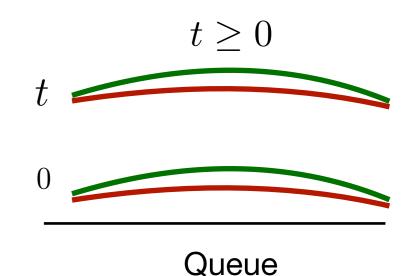


Monotonicity

If two initial conditions $\{x_i(0)\}_{i\in\mathbb{Z}^d}$ and $\{y_i(0)\}_{i\in\mathbb{Z}^d}$ s.t. for all $i\in\mathbb{Z}^d$ $x_i(0)\leq y_i(0)$, then there exists a coupling such that almost-surely $\forall t\geq 0$, $\forall i\in\mathbb{Z}^d$ $x_i(t)\leq y_i(t)$.

Proof Induction

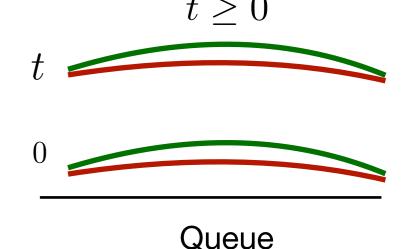
Arrivals retain the ordering



Monotonicity

If two initial conditions $\{x_i(0)\}_{i\in\mathbb{Z}^d}$ and $\{y_i(0)\}_{i\in\mathbb{Z}^d}$ s.t. for all $i\in\mathbb{Z}^d$ $x_i(0)\leq y_i(0)$, then there exists a coupling such that almost-surely $\forall t\geq 0$, $\forall i\in\mathbb{Z}^d$ $x_i(t)\leq y_i(t)$.

Proof Induction

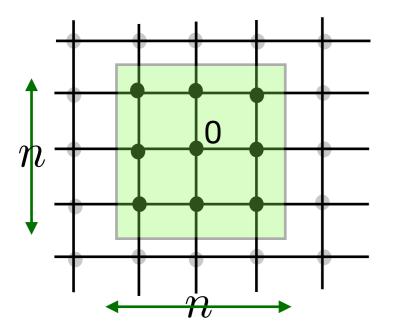


Arrivals retain the ordering

Two queues are equal - higher interference system has smaller departure

Unequal queues - Retains ordering as at-most one customer departs

Proof Steps



- 1. Consider a spatial truncation finite dimensional
- 2. If $\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1 =>$ Stability

Max queue length - Lyapunov function

3. Rate Conservation Principle

$$\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1 \implies \mathbb{E}[y_0^{(n)}] = \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j} - o_n(1) \qquad \textit{Tightness of } \{y_0^{(n)}\}_{n \in \mathbb{N}}$$

- 4. Switch of limits in time and space Coupling from the past
- 5. Monotone Convergence to yield the moment formula

Large Initial Conditions

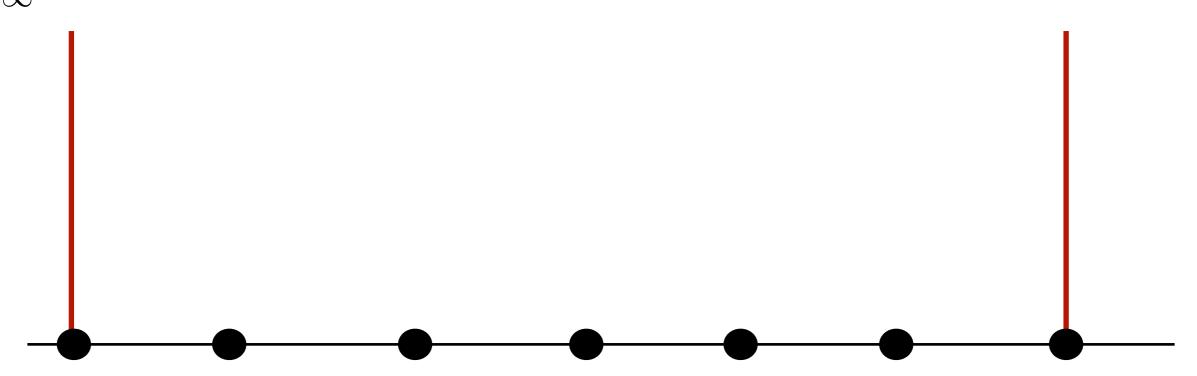
Theorem

For every λ , there exists a probability distribution on $\mathbb N$ such that if the initial condition is $\{x_i(0)\}_{i\in\mathbb Z^d}$ i.i.d. from this distribution, then $\forall i\in\mathbb Z^d$, $\lim_{t\to\infty}x_i(t)=\infty$ almost-surely.

Large Initial Conditions

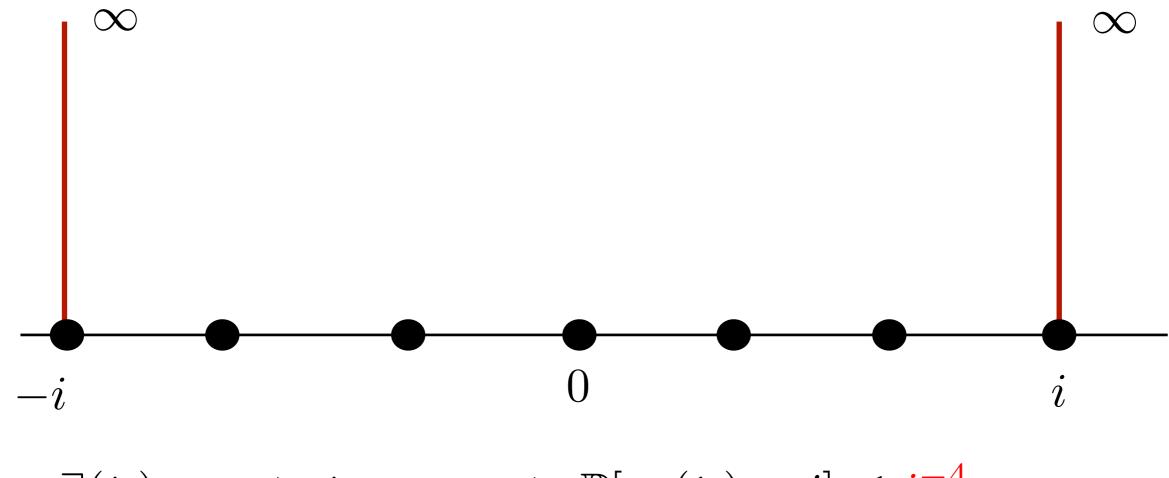
Theorem

For every λ , there exists a probability distribution on $\mathbb N$ such that if the initial condition is $\{x_i(0)\}_{i\in\mathbb Z^d}$ i.i.d. from this distribution, then $\forall i\in\mathbb Z^d$, $\lim_{t\to\infty}x_i(t)=\infty$ almost-surely



If "large" frozen boundary is present, then stationary queue length at 0 is also "large" with "high probability"

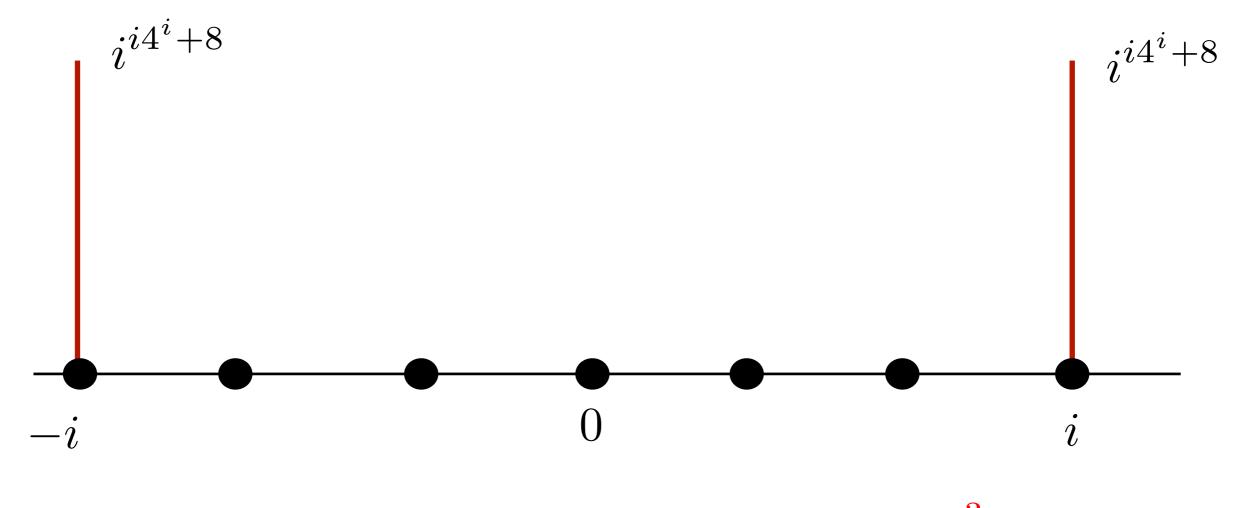
Convergence to Stationary Solutions



$$\exists (t_i)_{i \in \mathbb{N}} \text{ s.t. } t_i \to \infty \text{ s.t. } \mathbb{P}[x_0(t_i) < i] \leq i^{-4}$$

Because of the infinite barrier, all queues diverge to infinity at a linear rate

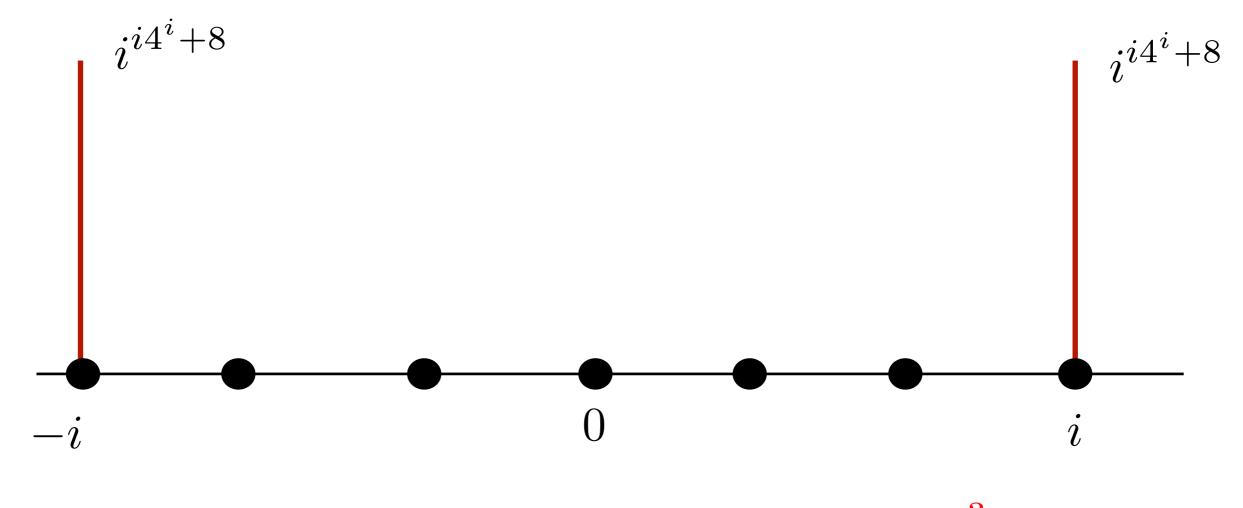
Convergence to Stationary Solutions



$$\exists (t_i)_{i \in \mathbb{N}} \text{ s.t. } t_i \to \infty \text{ s.t. } \mathbb{P}[x_0(t_i) < i] \leq i^{-3}$$

Since interested only in finite time t_i , can bring down the barrier to a finite value at a small penalty in probability

Convergence to Stationary Solutions



$$\exists (t_i)_{i \in \mathbb{N}} \text{ s.t. } t_i \to \infty \text{ s.t. } \mathbb{P}[x_0(t_i) < i] \leq i^{-3}$$

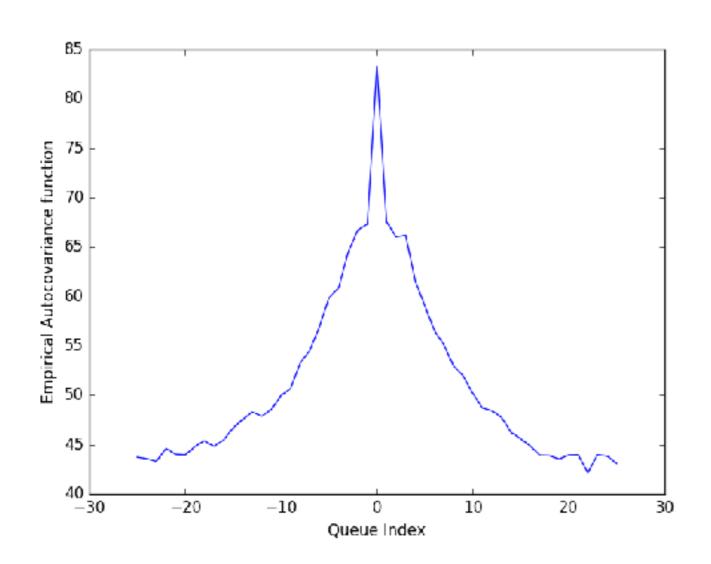
Since interested only in finite time t_i , can bring down the barrier to a finite value at a small penalty in probability

Borel-Cantelli to conclude the proof

Open Questions

If $\lambda \sum a_j < 1$, then what moments of $x_{0,\infty}(0)$ exists ? How do correlations

decay ? i.e., how does
$$k \to \mathbb{E}[x_0x_k] - (\mathbb{E}[x_0])^2$$
 decay ?



d=1, n=51
$$\lambda = 0.1419, \lambda_c = 1/7$$

No propagation of chaos even in an infinite system!

Open Questions

<u>Uniqueness of Stationary Solution</u>

Existence/construction of other non-degenerate stationary solutions?

Convergence to Stationary Solution

Do other initial conditions apart from all empty converge to a stationary limit?

Prediction of bad outage events propagating from 'far out' in space

Summary of the Talk

Two problems in networking

- Introduced new mathematical models and questions
- Demonstrate the effectiveness of the model

Contextual Data in Graph Clustering Scalability of wireless protocols

New tools and techniques in the analysis of the proposed models

Papers

- Social Learning in Multi Agent Multi Armed Bandits with S. Shakkottai and A. Ganesh, Preprint, 2019
- 2. Interference Queueing Networks on Grids with F. Baccelli and S. Foss, In Annals of Applied Probability, to appear
- Community Detection on Euclidean Random Graphs, with F. Baccelli and E. Abbe Journal version under submission In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018 Extended Abstract in Allerton, 2017
- 4. Spatial Birth-Death Wireless Networks, with F. Baccelli In IEEE Transactions on Information Theory, 2017. Extended abstract in Allerton, 2016
- Performance-oriented association in large cellular networks with technology diversity, with F. Baccelli and J. Woo Cho, In International Teletrafic Congress (ITC 28), 2016
- CSMA k-SIC: A Class of Distributed MAC protocols and their performance evaluation, with F. Baccelli, In INFOCOM, 2015

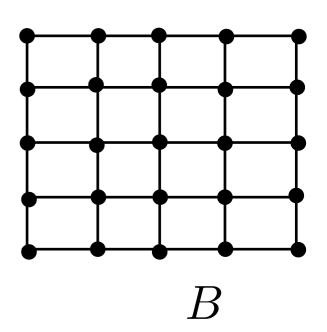
Acknowledgements

Main Proof Idea - Stability

Two systems on $B \subset \mathbb{Z}^d$ with the same dynamics. All queues in B^{\complement} are frozen without activity.

- $\{y_i(t)\}_{i\in B}$: the set B is a torus.
- $\{z_i(t)\}_{i\in B}$: the set B has boundary effects.

Interference is lower at the boundaries.



Main Proof Idea - Stability

Two systems on $B \subset \mathbb{Z}^d$ with the same dynamics. All queues in $B^{\mathbb{C}}$ are frozen without activity.

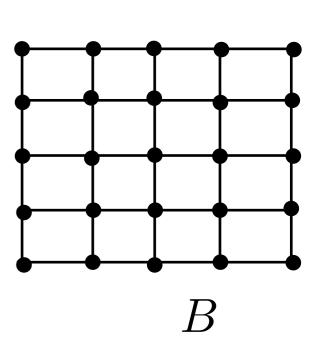
- $\{y_i(t)\}_{i\in B}$: the set B is a torus.
- $\{z_i(t)\}_{i\in B}$: the set B has boundary effects.

Interference is lower at the boundaries.

$$\forall t \ \forall i \in B$$

- 1) $x_i(t) \ge z_i(t)$ 2) $y_i(t) \ge z_i(t)$

Monotonicity



Finite Torus System

 $\{y_i(t)\}_{i\in B}$ process on a torus.

Theorem - If $\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$, then $\{y_i(t)\}_{i \in B}$ is Positive Recurrent and the stationary distribution possess exponential moments. Furthermore, the mean queue length satisfies $\mathbb{E}[y_0(t)] = \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j}$

Finite Torus System

 $\{y_i(t)\}_{i\in B}$ process on a torus.

Theorem - If $\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$, then $\{y_i(t)\}_{i \in B}$ is Positive Recurrent and the stationary distribution possess exponential moments. Furthermore, the mean queue length satisfies $\mathbb{E}[y_0(t)] = \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j}$

Proof Idea of Stability

$$\frac{d}{dt}y_i = \lambda - \frac{y_i}{\sum_{j \in \mathbb{Z}^d} a_j y_{(i-j)/B}(t)}$$

Fluid scale equation

Consider the maximal queue $i^*(t) := \arg \max_{i \in B} y_i(t)$

$$\frac{d}{dt}y_{i^*(t)} = \lambda - \frac{y_{i^*(t)}}{\sum_{j \in \mathbb{Z}^d} a_j y_{i^*(t) - j}(t)}$$

$$\leq \lambda - \frac{1}{\sum_{j \in \mathbb{Z}^d} a_j} < -\epsilon$$

This has negative drift

Can upper bound by a stable Single server queue.

Finite Torus System

Rate Conservation - "On Average what comes in is what goes out".

For Ex.
$$\lambda = \mathbb{E}\left[\frac{y_0(t)}{\sum_{j \in \mathbb{Z}^d} a_j y_{j/B}(t)} \mathbf{1}_{y_0(t)>0}\right]$$

Avg arrival rate equals avg departure rate.

Key Idea:

Consider
$$I(t):=y_0(t)\sum_{j\in\mathbb{Z}^d}a_jy_j(t)$$
 in stationarity and solve $\frac{d}{dt}\mathbb{E}[I(t)]=0$

Average increase due to arrivals -
$$\lambda + \lambda (\sum_{j \in \mathbb{Z}^d} a_j) \mathbb{E}[y_0(t)]$$

Average decrease due to departures - $\mathbb{E}[y_0(t)]$

Equating the two yields
$$\mathbb{E}[y_0(t)] \in \left\{ \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j}, \infty \right\}$$

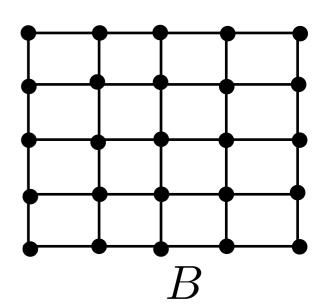
Coupling From the Past

 $\{z_i(t)\}_{i\in B}$, process where the set B has boundary effects.

Monotonicity =>
$$x_i(t) \ge z_i(t)$$
 and $y_i(t) \ge z_i(t)$

Thus
$$\mathbb{E}[z_0(t)] \leq \frac{\lambda}{1-\lambda \sum_{j\in\mathbb{Z}^d} a_j}$$
 Uniformly in the size of B

Consider $B_n \nearrow \mathbb{Z}^d$ and corresponding stationary $z_0^{(n)}(0)$



Coupling From the Past

Let $B_n \nearrow \mathbb{Z}^d$. $z_{0,t}^{(n)}(0)$ - the queue length of queue 0 at time 0, when the truncated B_n system is started empty at time -t.

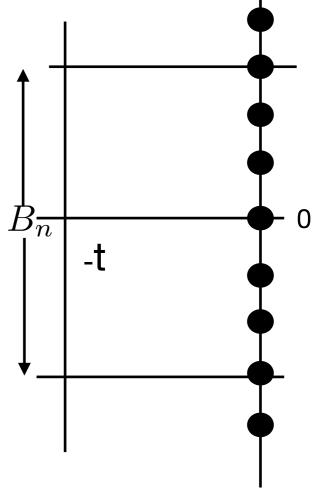
Notice
$$\forall t \geq 0$$
 $\lim_{n \to \infty} z_{0,t}^{(n)}(0) = x_{0,t}(0)$ Corollary of the construction Queues

Monotonicity =>

$$\lim_{t\to\infty} z_{0,t}^{(n)} := z_{0,\infty}^{(n)} \ \text{ and } \lim_{n\to\infty} z_{0,\infty}^{(n)} := z_{0,\infty}^{(\infty)} \ \text{ a.s.}$$

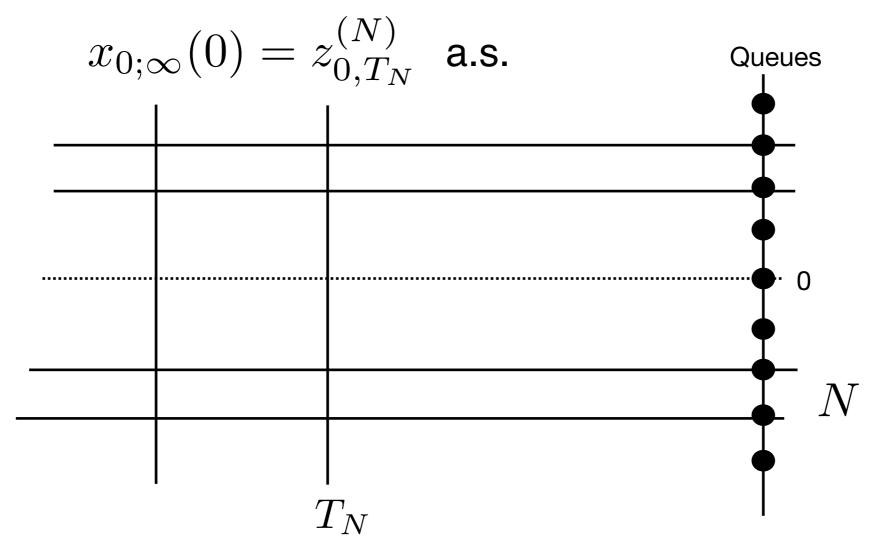
We know
$$\sup_{n \in \mathbb{N}} \mathbb{E}[z_{0,\infty}^{(n)}] \leq \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j}$$

thus,
$$\mathbb{E}[z_{0,\infty}^{(\infty)}]<\infty$$



Coupling From the Past

Lemma - If $\lambda \sum_{j\in\mathbb{Z}^d} a_j < 1$, then $\exists N\in\mathbb{N}$ and $\exists T_N<\infty$ random such that



We know
$$\sup_{n\in\mathbb{N}}\mathbb{E}[z_{0,\infty}^{(n)}]\leq \frac{\lambda}{1-\lambda\sum_{j\in\mathbb{Z}^d}a_j}$$
. Thus $\mathbb{E}[x_{0,\infty}(0)]\leq \frac{\lambda}{1-\lambda\sum_{j\in\mathbb{Z}^d}a_j}$

Monotonicity

If two initial conditions $\{x_i(0)\}_{i\in\mathbb{Z}^d}$ and $\{y_i(0)\}_{i\in\mathbb{Z}^d}$ s.t. for all $i\in\mathbb{Z}^d$ $x_i(0)\leq y_i(0)$ are coupled with the same driving sequence $(\mathcal{A}_i,\mathcal{D}_i)_{i\in\mathbb{Z}^d}$ then $\forall t\geq 0\;,\,\forall i\in\mathbb{Z}^d\;x_i(t)\leq y_i(t)$

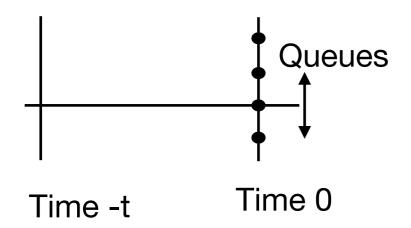
Proof Induction on events.

Arrivals retain the ordering.

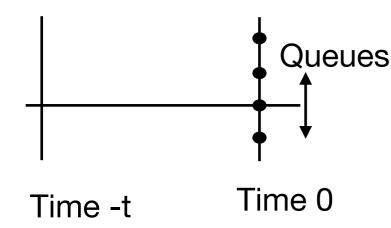
Consider a potential departure event at queue i.

If $x_i(t) \leq y_i(t) + 1$, then ordering retained as exactly 1 departure. If $x_i(t) = y_i(t)$, then the departure probabilities are ordered by induction hypothesis $\frac{x_i(t)}{\sum_{i \in \mathbb{Z}^d} a_i x_{i-i}(t)} \geq \frac{y_i(t)}{\sum_{i \in \mathbb{Z}^d} a_i y_{i-i}(t)}$

 $x_{i;t}(0)$ Queue length of i at time 0 **given** the entire system was started empty at time -t



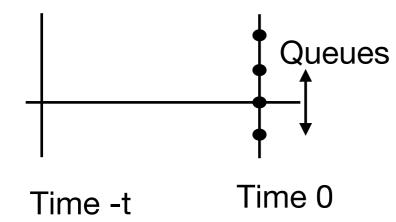
 $x_{i;t}(0)$ Queue length of i at time 0 **given** the entire system was started empty at time -t



Monotonicity => $t \rightarrow x_{i;t}(0)$ is non-decreasing

$$x_{i,\infty}(0) := \lim_{t \to \infty} x_{i;t}(0)$$
 a.s.

 $x_{i;t}(0)$ Queue length of i at time 0 \emph{given} the entire system was started empty at time -t

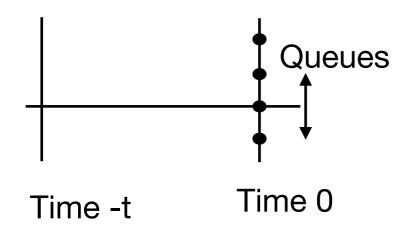


Monotonicity => $t \rightarrow x_{i;t}(0)$ is non-decreasing

$$x_{i,\infty}(0) := \lim_{t \to \infty} x_{i;t}(0)$$
 a.s.

 $\{x_{i,\infty}(0)\}_{i\in\mathbb{Z}^d}$ is a minimal stationary solution to the dynamics.

 $x_{i;t}(0)$ Queue length of i at time 0 \emph{given} the entire system was started empty at time -t



Queues Monotonicity => $t \to x_{i;t}(0)$ is non-decreasing

$$x_{i,\infty}(0) := \lim_{t \to \infty} x_{i;t}(0)$$
 a.s.

0-1 Law
$$\mathbb{P}[\cap_{i\in\mathbb{Z}^d}x_{i,\infty}(0)<\infty]\in\{0,1\}$$

If $x_{i,\infty}(0) < \infty$ a.s. => System is stable

 $\{x_{i,\infty}(0)\}_{i\in\mathbb{Z}^d}$ is a minimal stationary solution to the dynamics.