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Abstract

We consider the problem of minimizing regret in an N agent heterogeneous stochastic linear bandits
framework, where the agents (users) are similar but not all identical. Our problem is motivated by
recommendation systems that enjoy the more the merrier phenomenon; as more people join the system,
the service improves for everyone, as the system can learn across heterogenous users. We model user
heterogeneity using two popularly used ideas in practice; (i) A clustering framework where users are
partitioned into groups with users in the same group being identical to each other, but different across
groups, and (ii) a personalization framework where no two users are necessarily identical, but a user’s
parameters are close to that of the population average. In the clustered users’ setup, we propose a
novel algorithm, based on successive refinement of cluster identities and regret minimization. We show
that, for any agent, the regret scales as O(

√
T/N), if the agent is in a ‘well separated’ cluster, or scales

as O(T
1
2
+ε/(N)

1
2
−ε) if its cluster is not well separated, where ε is positive and arbitrarily close to 0.

Our algorithm is adaptive to the cluster separation, and is parameter free—it does not need to know
the number of clusters, separation and cluster size —yet the regret guarantee adapts to the inherent
complexity. In the personalization framework, we introduce a natural algorithm where, the personal
bandit instances are initialized with the estimates of the global average model. We show that, an agent
i whose parameter deviates from the population average by εi, attains a regret scaling of Õ(εi

√
T ).

This demonstrates that if the user representations are close (small εi), the resulting regret is low, and
vice-versa. The results are empirically validated and we observe superior performance of our adaptive
algorithms over non-adaptive baselines.

1 Introduction

Large scale web recommendation systems have become ubiquitous in the modern day, due to a myriad of
applications that use them including online shopping services, video streaming services, news and article
recommendations, restaurant recommendations etc, each of which are used by thousands, if not more users,
across the world. For each user, these systems make repeated decisions under uncertainty, in order to better
learn the preference of each individual user and serve them. A unique feature these large platforms have
is that of collaborative learning —namely applying the learning from one user to improve the performance
on another [Lee01]. However, the sequential online setting renders this complex, as two users are seldom
identical [PEZ+20].

?Equal contribution.
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We study the problem of multi-user contextual bandits [CMB20], and quantify the gains obtained
by collaborative learning under user heterogeneity. Towards this end, we propose two models of user-
heterogeneity: (a) clustering framework where only users in the same group are identical (b) person-
alization framework where no two users are necessarily identical, but are close to the population av-
erage. Both these models are widely used in practical systems involving a large number of users (ex.
[PEZ+20, LSY03, SKKR01, SKKR02, LK03]). User clustering in such systems can be induced from a
variety of factors such as affinity to similar interests, age-groups etc [Ozs16, LLCS15, SM14]. The per-
sonalization framework in these systems is also a natural in many neural network models, wherein users
represented by learnt embedding vectors are not identical; nevertheless similar users are embedded nearby
[XDZ+17, ZDF17, OTOT17, Ozs16].

Formally, our model consists of N users, all part of a common platform. The interaction between the
agents and platform proceeds in a sequence of rounds. At the beginning of each round, the platform receives
K context vectors corresponding to K items from the environment. The platform then recommends an item
to each user and receives feedback from the users about the item. We posit that associated with each user i, is
an preference vector θ∗i , initially unknown to the platform. In any round, the average reward (the feedback)
received by agent i for a recommendation of item, is the inner product of θ∗i with the context vector of the
recommended item. The goal of the platform is to maximize the reward collected over a time-horizon of T
rounds. Following standard terminology, we henceforth refer to an “arm” and item interchangeably, and thus
“recommending item k” is synonymous to “playing arm k”. We also use agents and users interchangeably.

Example Application: Our setting is motivated through a caricature of a news recommendation system
serving N users and K publishers [LCLS10]. Each day, each of the K publishers, publishes a news article,
which corresponds to the context vector in our contextual bandit framework. In practice, one can use
standard tools to embed articles in vector spaces, where the dimensions correspond to topics such as politics,
religion, sports etc ([WTAL16]). The user preference indicates the interest of a user, and the reward, being
computed as an inner product of the context vector and the user preference, models the observation that
the more aligned an article is to a user’s interest, the higher the reward.

For both frameworks, we propose adaptive algorithms; in the clustering setup, we propose Successive
Clustering of Linear Bandits (SCLB), which is agnostic to the number of clusters, the gap between clusters
and the cluster size. Yet SCLB yields regret that depends on these parameters, and is thus adaptive. In
the personalization framework, our proposed algorithm, namely Personalized Multi-agent Linear Bandits
(PMLB) adapts to the level of common representation across users. In particular, if an agents’ preference
vector is close to the population average, PMLB exploits that and incurs low regret for this agent due to
collaboration. On the other hand if an agent’s preference vector is far from the population average, PMLB
yields a regret similar to that of OFUL [CMB20] or Linear Bandit algorithms [AyPS11] that do not benefit
from multi-agent collaboration.

1.1 Our Contributions:

In the clustering framework, we give a novel multi-phase, successive refinement based algorithm, SCLB,
that achieves collaborative gain, even in the most adverse settings. SCLB does not need any knowledge of the
instance, such as the number of clusters, cluster sizes or the cluster separation; but is adaptive. Formally, we
show that the regret of SCLB is O(

√
T/N), if the agent is in a ‘well separated’ cluster, or O(T

1
2 +ε/(N)

1
2−ε)

if its cluster is not well separated, where ε is positive and arbitrarily close to 0. This result holds true, even
in the limit when the cluster separation approaches 0. This shows that when the underlying instance gets
harder to cluster, the regret is increased. Nevertheless, despite the clustering being hard to accomplish,
every user still experiences collaborative gain of N1/2−ε and regret sub-linear in T . On the other hand if
the clustering task is easy i.e., well-separated, then the regret rate matches that of an oracle that knows the
cluster identities.

It is worth pointing out that SCLB works for all ranges of separation, which is starkly different from
standard algorithms in bandit clustering ([GLZ14, GLK+17, KSL16]) and statistics ([BWY+17, KC20]).
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We now compare our results to CLUB, proposed in [GLZ14], that can be modified to be applicable to our
setting (c.f. Section 6). First, CLUB is non-adaptive and its regret guarantees hold only when the clusters
are separated. Second, even in the separated setting, the separation (gap) cannot be lower than O(1/T 1/4)
for CLUB, while it can be as low as O(1/Tα), where α < 1/2 for SCLB. Moreover, in simulations (Section 6)
we observe that SCLB outperforms CLUB in a variety of synthetic and a real data setting.

In the personalization framework, we define the factor of common representation for agent i as
εi := ‖θ∗i− 1

N

∑N
l=1 θ

∗
l ‖, where θ∗i ∈ Rd is agent i’s representation, and 1

N

∑N
l=1 θ

∗
i is the average representation

of N agents. We propose an algorithm PMLB, which adapts to εi gracefully (without knowing it apriori)
and yields a regret of O(εi

√
dT ). Hence, if the agents share more and more representations, i.e., εi is small,

then PMLB obtains low regret. On the other hand, if εi is large, say O(1), the agents do not share a common
representation, the regret of PMLB is O(

√
dT ), which matches that obtained by each agent playing OFUL,

independently of other agents. Thus, PMLB benefits from collaborative learning and obtains small regret,
if the problem structure admits, else the regret matches the baseline strategy of every agent running an
independent bandit instance.

Empirical Validation: We verify our theoretical insights through simulations, both on synthetic and
Last.FM real dataset [GLZ14]. We compare with two baselines —one is CLUB of [GLZ14], and the other is
the baseline where every agent runs an independent bandit model, i.e., no collaboration. We observe that
our algorithms have superior performance compared to the baselines in a variety of settings.

2 Related Work

Collaborative gains in multi-user recommendation systems have long been studied in Information retrieval
and recommendation systems community (ex. [LK03, SKKR02, LSY03, Lee01]). The focus has been in de-
veloping effective ideas to help practitioners deploy large scale systems. Empirical studies of recommendation
system has seen renewed interest lately due to the integration of deep learning techniques with classical ideas
(ex. [MNLD20, ZHW+19, YYC+20, CAS16, OTOT17, NMS+19]). Motivated by the empirical success, we
undertake a theoretical approach to quantify collaborative gains achievable in a contextual bandit setting.
Contextual bandits has proven to be fruitful in modeling sequential decision making in many applications
[LCLS10, CBGZ13, GLZ14].

The paper of [GLZ14] is closest to our clustering setup, where in each round, the platform plays an arm
for a single randomly chosen user. As outlined before, our algorithm obtains a superior performance, both
in theory and empirically. For personalization, the recent paper of [YHLD21] is the closest, which posits all
users’s parameters to be in a common low dimensional subspace. [YHLD21] proposes a learning algorithm
under this assumption. In contrast, we make no parametric assumptions, and demonstrate an algorithm
that achieves collaboration gain, if there is structure, while degrading gracefully to the simple baseline of
independent bandit algorithms in the absence of structure.

The framework of personalized learning has been exploited in a great detail in representation learning and
meta-learning. While [DTB+19, LR11, RCG+15, HPR+17, PBS15] learns common representation across
agents in the RL framework, [ADK+20] uses it for imitation learning. We remark that representation
learning is also closely connected to meta-learning [DCGP19, FRKL19, KBT19], where close but a common
initialization is learnt from leveraging non identical but similar representations. Furthermore, in Federated
learning, the problem of personalization is a well studied problem (see [MMRS20, FMO20b, FMO20a]).

3 Problem Setup

Our system consists of N users, interacting with a centralized system (termed as ‘center’ henceforth) repeat-
edly over T rounds. At the beginning of each round, environment provides the center with K context vectors
corresponding to K arms, and for each user, the center recommends one of the K arms to play. At the end of
the round, every user receives a reward for the arm played, which is observed by the center. The K context
vectors in round t are denoted by βt = [β1,t, . . . , βK,t] ∈ Rd×K . Each user i, is associated with a preference

3



Algorithm 1: Successive Clustering of Linear Bandits (SCLB)

1: Input: No. of users N , horizon T , parameter α < 1/2, constant C, high probability bound δ
2: for phases 1 ≤ i ≤ log2(T ) do
3: Play CMLB (γ = 3/(N2i)α, horizon T = 2i, high probability δ/2i, cluster-size p∗ = i−2)
4: end for

vector θ∗i ∈ Rd, and the reward user i obtains from playing arm j at time t is is given by 〈βj,t, θ∗〉+ ξt. The
(ξt)t≥1 and (βt)t≥1 are random variables, whose distribution is described below.

We follow the stochastic framework [AyPS11, CMB20] and denote by Ft−1, as the sigma algebra generated
by all noise random variables upto and including time t − 1. We denote by Et−1(.) as the conditional
expectation operator with respect to Ft−1. We assume that the (ξt)t≥1 are conditionally sub-Gaussian noise
with known parameter σ, conditioned on all the arm choices and realized rewards in the system upto and
including time t− 1. Without loss of generality, we assume σ = 1 throughout. The contexts βi,t ∈ Bd2(1) are
assumed to be drawn independent of both the past and {βj,t}j 6=i, satsifying

Et−1[βi,t] = 0 Et−1[βi,t β
>
i,t] � ρminI. (1)

This means that the conditional mean of the covariance matrix is zero and the conditional covariance matrix
is positive definite with minimum eigenvlaue at least ρmin. These assumptions are standard and widely
used in past literature on stochastic linear bandits [FKL19, CMB20]. Also, since the context vectors are
drawn from unit sphere (and hence sub-Gaussian), we have ρmin ≤ 1/d, and hence one needs to track the
dependence on ρmin. Observe that our stochastic assumption also includes the simple setting where the
contexts evolve according to a random process independent of the actions and rewards from the learning
algorithm.

Throughout the paper, we use the linear bandit algorithm, namely OFUL (see [AyPS11]) as a blackbox,
and use it in a judicious way for clustering and personalization. In particular we use a variant of the OFUL
as prescribed in [CMB20]1. At time t, we denote by Bi,t ∈ [K] to be the arm played by any agent in cluster
i with preference vector θ∗i . The corresponding regret, over a time horizon of T is given by

Ri(T ) =

T∑
t=1

E max
j∈[K]

〈θ∗i , βj,t − βBi,t,t〉 (2)

4 Clustering framework for multi-agent contextual bandits

In this section, we assume that the users are clustered into L groups, with pi ∈ (0, 1] denoting the
fraction of users in cluster i. All users in the same cluster have the same context vector, and thus without
loss of generality, for all clusters i ∈ [L], we denote by θ∗i ∈ Rd, to be the preference vector of any user
of cluster i. We define the separation parameter, or SNR (signal to noise ratio) of cluster i ∈ [L] as
∆i := minj∈[L]\{i} ‖θ∗i − θ∗j ‖, smallest distance to another cluster.

Learning Algorithm: We propose the Successive Clustering of Linear Bandits (SCLB) algorithm in
Algorithm 1. SCLB does not need any knowledge of the gap {∆i}Li=1, the number of clusters L or the cluster
size fractions {pi}Li=1. Nevertheless, SCLB adapts to the problem SNR and yields regret accordingly. One
attractive feature of Algorithm 1 is that it works uniformly for all ranges of the gap {∆i}Li=1. This is in
sharp contrast with the existing algorithms [GLZ14] which is only guaranteed to give good performance when
the gap {∆i}Li=1 are large enough. Furthermore, our uniform guarantees are in contrast with the works in
standard clustering algorithms, where theoretical guarantees are only given for a sufficiently large separation
(see [KC20, BWY+17].)

1We use OFUL as used in the OSOM algorithm of [CMB20] for the linear contextual setting.
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Algorithm 2: Clustered Multi-Agent Bandits (CMLB)

1: Input: No. of users N , horizon T , parameter α < 1/2, constant C, high probability bound δ, threshold
γ, cluster-size parameter p∗

Individual Learning Phase
2: TExplore ← C(2)d(NT )2α log(1/δ)
3: All agents play OFUL(δ) independently for Texplore rounds

4: {θ̂(i)}Ni=1 ← All agents’ estimates at the end of round Texplore.

Cluster the Users
5: User-Clusters ← MAXIMAL-CLUSTER({θ̂(i)}Ni=1, γ, p∗)

Collaborative Learning Phase
6: Initialize one OFUL(δ) instance per-cluster
7: for clusters ` ∈ {1, . . . , |User-Clusters|} in parallel do
8: for times t ∈ {Texplore + 1, · · · , T} do
9: All users in the `-th cluster play the arm given by the OFUL algorithm of cluster l.

10: Average of the observed rewards of all users of cluster l is used to update the OFUL(δ) state of
cluster l

11: end for
12: end for

SCLB is a multi-phase algorithm, which invokes Clustered Multi-agent Linear Bandits (CMLB) (Algo-
rithm 2) repeatedly, by decreasing the size parameter, namely p∗ polynomially and high probability parameter
δi exponentially. Algorithm 1 proceeds in phases of exponentially growing phase length with phase j ∈ N
lasting for 2j rounds. In each phase, a fresh instance of CMLB is instantiated with high probability param-
eter δ/2j and the minimum size parameter j−2. Thus, as the phase length grows, the size parameter sent
as input to Algorithm 2 decays. We show that this simple strategy suffices to show that the size parameter
converges to pi, and we obtain collaborative gains without knowledge of pi.

The CMLB Sub-routine (Algorithm 2) : CMLB works in the three phases: (a) (Individual Learning)
the N users play an independent linear bandit algorithm to (roughly) learn their preference; (b) (Clustering)
users are clustered based on their estimates using MAXIMAL CLUSTER (see Algorithm 3); and (c) (Collaborative
Learning) one Linear Bandit instance per cluster is initialized and all users of a cluster play the same arm.
The average reward over all users in the cluster is used to update the per-cluster bandit instance. When
clustered correctly, the learning is faster, as the noise variance is reduced due to averaging across users.
Note that MAXIMAL CLUSTER algorithm requires a size parameter p∗. However, in simulations (Sec. 6), we
observe that CMLB works without the size parameter. Hence, empirically we show that CMLB is sufficient
for collaborative learning and successive refinement is not necessary.

4.1 Regret guarantee of SCLB

As mentioned earlier, SCLB is an adaptive algorithm that yields provable regret for all ranges of {∆i}Li=1.
When {∆i}Li=1 are large, SCLB can cluster the agents perfectly, and thereafter exploit the collaborative
gains across users in same cluster. On the other hand, if {∆i}Li=1 are small, SCLB still adapts to the gap,
and yields a non-trivial (but sub-optimal) regret. As a special case, if all the clusters are very close to one
another, SCLB identifies that setting and treats all N agents as one big cluster, yielding highest collaborative
gain.

Without loss of generality, in what follows, we focus on an arbitrary agent belonging to cluster i and
characterize her regret. Throughout this section, we assume

T ≥ C 1

N

[
τmin(δ)ρmin

d log(1/δ)

] 1
2α

, and τmin(δ) =

[
16

ρ2
min

+
8

3ρmin

]
log(

2dT

δ
) (3)
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Algorithm 3: MAXIMAL-CLUSTER

1: Input: All estimates {θ̂(i)}Ni=1, size parameter p∗ > 0, threshold γ ≥ 0.

2: Construct an undirected Graph G on N vertices as follows: ||θ̂∗i − θ̂∗j || ≤ γ ⇔ i ∼G j
3: C ← {C1, · · · , Ck} all the connected components of G
4: S(p∗)← {Cj : |Cj | < p∗N} {All Components smaller than p∗N}
5: C(p) ← ∪C∈S(p∗)C {Collapse all small components into one}
6: Return : C \ S(p∗)

⋃
C(p) {Each connected component larger than p∗N is a cluster, and all small

components are a single cluster}

Definition 1 (α-Separable Cluster). For a fixed α < 1/2, cluster i ∈ [L] is termed α-separable if ∆i ≥ 5
(NT )α .

Otherwise, it is termed as α-inseparable.

Lemma 1. If CMLB is run with parameters γ = 3/(NT )α and p∗ ≤ pi and α < 1
2 , then with probability at

least 1− 2
(
N
2

)
δ, any cluster i that is α-separable is clustered correctly. Furthermore, the regret of any user

in the α-separated cluster i satisfies,

Ri(T ) ≤ C1[
d

ρmin
(NT )α +

√
d

ρmin
(

√
T − d(NT )2α

ρmin
log(1/δ)

piN
)] log(1/δ),

with probability exceeding 1− 4
(
N
2

)
δ.

We now present the regret of SCLB for the setting with separable cluster

Theorem 1. If Algorithm 1 is run for T steps with parameter α < 1
2 , then the regret of any agent in a

cluster i that is α-separated satisfies

Ri(T ) ≤ 4
(

2
1√
pi

)
+ C2

[
d

ρmin
(NT )α +

√
dT

ρminN

]
log2(T ) log(1/δ),

with probability at-least 1−cN2δ. Moreover, if α ≤ 1
2 (

log
[
ρminT

dpiN

]
log(NT ) ), we have Ri(T ) ≤ Õ[2

1√
pi +

√
d

ρmin

√
T
N ] log(1/δ).

Remark 1. Note that we obtain the regret scaling of Õ(
√
T/N), which is optimal, i.e., the regret rate

matches an oracle that knows cluster membership. The cost of successive clustering is O(2
1√
pi ), which is a

T -independent (problem dependent) constant.

Remark 2. Note that the separation we need is only 5/(NT )α. This is a weak condition since in a collabo-
rative system with large N and T , this quantity is sufficiently small.

Remark 3. Observe that Ri(T ) is a decreasing function of N . Hence, more users in the system ensures
that the regret decreases. This is collaborative gain we obtain.

Remark 4. (Comparison with [GLZ14]) Note that in a setup where clusters are separated, [GLZ14] also
yields a regret of Õ(

√
T/N). However, the separation between the parameters (gap) for [GLZ14] cannot be

lower than O(1/T 1/4), in order to maintain order-wise optimal regret. On the other hand, we can handle
separations of the order O(1/Tα), and since α < 1/2, this is a strict improvement over [GLZ14].

Remark 5. Note that the constant term O(2
1√
pi ) can be removed if we have an estimate of the pi. In this

case, instead of SCLB, we simply run CMLB with the estimate of pi and obtain the regret of Lemma 1,

without the term O(2
1√
pi ). Note that in simulations (Sec. 6), we observe that the size input to CMLB is not

needed.
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We now present our results when cluster i is α-inseparable.

Lemma 2. If CMLB is run with input γ = 3/(NT )α and p∗ ≤ pi and α < 1
2 , then any user in a cluster i

that is α-inseparable satisfies

R(T ) ≤ C1L(
T 1−α

Nα
) + C2

√
d

ρmin
[

√
T − d(NT )2α

ρmin
log(1/δ)

p∗N
] log(1/δ),

with probability at least 1− 4
(
N
2

)
δ.

Theorem 2. If Algorithm 1 is run for T steps with parameter α < 1
2 , then the regret of any agent in a

cluster i that is α-inseparable satisfies

Ri(T ) ≤ 4(2
1√
pi ) + C L(

T 1−α

Nα
) log(T ) + C1

√
dT

Nρmin
log(1/δ) log2(T ),

with probability at-least 1− cN2δ. Moreover, if If α = 1
2 − ε, where ε is a positive constant arbitrarily close

to 0, we obtain, R(T ) ≤ Õ
[
2

1√
pi + L( T

1
2
+ε

N
1
2
−ε ) +

√
d

ρmin
(
√

T
N ) log(1/δ)

]
.

Remark 6. As ε > 0, the regret scaling of Õ( T
1
2
+ε

N
1
2
−ε ) is strictly worse than the optimal rate of Õ(

√
T/N).

This can be attributed to the fact that the gap (or SNR) can be arbitrarily close to 0, and inseparability of
the clusters makes the problem harder to address.

Remark 7. Note that similar to the previous setting, the regret decreases with N , which shows the benefit
of collaborative learning.

Remark 8. In this setting of low gap (or SNR), where the clusters are inseparable, most existing algorithms
(for example [GLZ14]) are not applicable. However, we still manage to obtain sub-optimal but non-trivial
regret with high probability.

Special case: all the clusters are ‘sufficiently’ close We now treat the special case where all the
clusters are reasonably close, but not necessarily identical. In particular, if maxi 6=j ‖θ∗i − θ∗j ‖ ≤ 1/(NT )α,
CMLB puts all the users in one big cluster. The collaborative gain in this setting is the largest. Here the
regret guarantee of SCLB will be similar to that of Theorem 2 with pi = 1. We defer to Appendix 11 for a
detailed analysis.

Remark 9. Note that if maxi6=j ‖θ∗i −θ∗j ‖ = 0, all agents are identical, we cannot match the guarantee of an

oracle which knows such information. The oracle guarantee would be O(
√
T/N), whereas our guarantee is

strictly worse. The additional regret stems from the universality of our algorithm as it works for all ranges
of ∆i.

5 Personalization in multi-agent contextual bandits

In this section, we present the formulation for personalized learning in multi-agent contextual Linear Bandit
framework. Suppose we have N agents, with optimal parameters {θ∗i }Ni=1. Unlike the clustering structure in
the above mentioned sections, here, {θ∗i }Ni=1 may all be different from one another. Of course, without any
structural similarity among {θ∗i }Ni=1, the only way-out is to learn the parameters separately for each user. In
the setup of personalized learning, it is typically assumed that (see [YHLD21, CHMS21, FMO20c, LHBS20]
and the references therein) that the parameters {θ∗i }Ni=1 share some commonality, and the job is to learn
the shared components or representations of {θ∗i }Ni=1 collaboratively. After learning the common part, the
individual representations can be learnt locally at each agent.

7



Algorithm 4: Personalized Multi-agent Linear Bandits (PMLB)

1: Input: Agents N , Horizon T

Common representation learning : Estimate θ̄∗ = 1
N

∑N
i=1 θ

∗
i

2: Initialize a single instance of OFUL(δ), called common OFUL
3: for times t ∈ {1, · · · ,

√
T} do

4: All agents play the action given by the common OFUL
5: Common OFUL’s state is updated by the average of observed rewards at all agents
6: end for
7: θ̂∗ ← the parameter estimate of Common OFUL at the end of round

√
T

Personal Learning

8: for agents i ∈ {1, . . . , N} in parallel do
9: Initialize one ALB-Norm(δ) of [GSK21] instance per agent

10: for times t ∈ {
√
T + 1, . . . , T} do

11: Agents play arm specified by their personal copy of ALB-Norm (denoted as β
b
(i)
t ,t

) and receive

reward yt
12: Every agent updates their ALB-Norm state with corrected reward ỹ

(t)
i = y

(t)
i − 〈βb(i)t ,t

, θ̂∗〉
13: end for
14: end for

Similar to Section 3, the contexts βi,t-s are drawn independent of the past from a distribution such that
βi,t is independent of {βj,t}j 6=i. The only difference is that, instead of sampling the contexts from unit ball

B(1)
d , we assume that βi,t-s are assumed to be drawn from scaled Gaussian N (0, 1

d Id). Hence, the conditions
of equation (1) are satisfied with ρmin = 1/d. This is without loss of generality, as it simplifies the exposition.

We now define the notion of common representation across users. For consistency, similar to Section 3,
we assume ‖θ∗l ‖ ≤ 1 for all l ∈ [N ]. We define θ̄∗ = 1

N

∑N
l=1 θ

∗
l as the average parameter.

Definition 2. (ε common representation) An agent i has εi common representation across N agents if
‖θ∗i − θ̄∗‖ ≤ εi, where εi is defined as the common representation factor.

The above definition characterizes how far the representation of agent i is from the average representation
θ̄∗. Note that since ‖θ∗l ‖ ≤ 1 for all l, we have εi ≤ 2. Furthermore, if εi is small, one can hope to exploit
the common representation across users. On the other hand, if εi is large (say O(1)), there is no hope to
leverage collaboration across agents.

We now present Personalized Multi-agent Linear Bandits (PMLB) (Algorithm 4), which adapts to the
common representation factor εi, without knowing it apriori. In particular, we show that when εi is small,
Algorithm 4 exploits the common representation across users and obtains a low regret. On the other hand,
if εi is large, the regret of Algorithm 4 matches to the setup where agent i learns θ∗i without interacting
with other agents in the system. Note that this is intuitive since with high εi, the agents share no common
representation, and so we do not get a regret improvement in this case by exploiting the actions of other
agents.

Algorithm 4 works in two phases. In the first phase, it learns the average representation θ̄∗. Since the
algorithm aggregates the reward from all N agents, it turns out that the common representation learning
phase can be restricted to

√
T time steps. At the end of this phase, the center has the estimate θ̂∗ of the

average representation θ̄∗. In the personal learning phase, which lasts for T −
√
T time steps, each agent tries

to learn the vector θ∗i − θ̂∗, since the center plays the OFUL algorithm of [CMB20, AyPS11] with the shifted
reward. However, our goal is to characterize the regret of agent i. To achieve this, we analyze the regret
of the shifted OFUL algorithm in Appendix 15. In particular exploiting the anti-concentration property of
Chi-squared distribution along with some standard results from optimization, we show that the regret of the
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shifted system is worse that the regret of agent i (both in expectation and in high probability)2.

For learning θ∗i − θ̂∗, we employ the Adaptive Linear Bandits-norm (ALB-norm) algorithm of [GSK21].
ALB-norm is adaptive, yielding a norm dependent regret. The idea here is to exploit the fact that in the
common learning phase we have a good estimate of θ̄∗. Hence, if the common representation factor εi is
small, then ‖θ∗i − θ̂∗‖ is small, and it reflects in the regret expression. On the other hand, if εi is large, even

with the good estimation of θ̄∗, the quantity ‖θ∗i − θ̂∗‖ an be large, which worsens the regret scaling. We
have the following regret guarantee for Algorithm 4.

Theorem 3. If we play Algorithm 4 for upto T time and δ, where T ≥ τ2
min(δ) (where τmin(δ) is defined in

eqn. (3)) and d ≥ C log(K2T ), then the regret of agent i satisfies

Ri(T ) ≤ Õ(εi
√
dT + T 1/4

√
d2

ρminN
) log2(1/δ),

with probability at least 1− cδ − 1
poly(T ) .

Remark 10. Note that the leading term in the regret expression is Õ(εi
√
dT ). If the common representation

factor εi is small, PMLB exploits the common representation across agents and as a result the regret is small
as well.

Remark 11. On the other hand, if εi is big enough, say O(1), this implies that there is no common
representation across users, and hence collaborative learning is meaning less. In this case, the agents learn
individually (by running OFUL), and obtain a regret of Õ(

√
dT ) with high probability. Note that this is being

reflected in Theorem 3, as the regret is Õ(
√
dT ), when εi = O(1).

The above remarks imply the adaptivity of PMLB. Without knowing the common representation factor
εi, PMLB indeed adapts to it—meaning that yields a regret that depends on εi. If εi is small, PMLB
leverages common representation learning across agents, otherwise when εi is large, it yields a performance
equivalent to the individual learning.

The requirement on d in Theorem 3 can be removed if we consider the expected regret.

Corollary 1. (Expected Regret) Suppose T ≥ τ2
min(δ) for δ > 0. The expected regret of the i-th agent after

running Algorithm 4 for T time steps is given by

E[Ri(T )] ≤ Õ(εi
√
dT + T 1/4

√
d2

ρminN
).

Remark 12. When εi = 0, i.e., in the case when all agents have the identical vectors θ∗i , then Theorem 3

gives a regret scaling as Ri(T ) ≤ Õ(T 1/4d
√

1
ρminN

). This does not contradict the well known lower bound of

R(T ) ≥ Ω(
√
dT ) ([LS20, Chapter 24] with finite action set) as the lower bound is valid only in the regime

d ≤ O(
√
T ), in which case our bound in Theorem 3 has regret scaling larger than O(T 3/4) with respect to T .

6 Experiments

We simulate CMLB with p∗ set to 0. Although in theory (Lemmas 1, 2), we need 0 < p∗ ≤ p to be non-
trivial, we do not require it so in simulations as demonstrated in this section. Thus, we only report results
from CMLB and not SCLB as its performance is worse than CMLB.

2This is intuitive since, otherwise one can find appropriate shifts to reduce the regret of OFUL, which contradicts the
optimality of OFUL.
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Figure 1: Fig (a), (b), (c), (d) are on synthetic data and (e) is on Last.FM dataset. In fig (e), the ratio of the
cumulative regret of CLUB and CMLB with that of recommending arms at random is plotted.

6.1 Synthetic Simulations

Data : For each plot of Figures 1 (panel (a) - (d)), users are clustered such that the frequency of cluster i is
proportional to i−z (identical to that done in [GLZ14]), where z is mentioned in the figures. Thus for z = 0,
all clusters are balanced, and for larger z, the clusters become imbalanced. For each cluster, the unknown
parameter vector θ∗ is chosen uniformly at random from the unit sphere.

Setup : We compare CMLB (Algorithm 2) with CLUB [GLZ14] and the simple baseline of no collab-
oration, where every agent has an independent copy of OFUL, a Linear Bandit algorithm. This is called
as LinUCB-Ind in the plots above. In each setting, we simulate all algorithms with the 25 context-vectors,
each of dimension 15, sampled at random from the scaled Gaussian distribution N (0, d−1Id). The plots in
Figure 1 (a) - (d) show the regret averaged over all users, after each algorithm has taken 1000 steps for all
users. CMLB and LinUCB-Ind take a total of 1000 rounds, while CLUB takes 1000× num-agents rounds.
For CLUB, users are picked in a round-robin fashion, with all users shown the same set of contexts in a
batch. Thus at the t-th arm-pull in all algorithms, all users have the same set of contexts. We repeat 30
times and plot 95-th percentile confidence bounds of the regret averaged over users.

Hyper-parameters : For CMLB, in all experiments, we use δ = 0.4, α = 0.2, C = 0.2 and p∗ = 0.
For LinUCB, we use λ = 1. For CLUB, we tuned the two hyper-parameters α and α2 for each setting, by
considering the performance over the first 500 rounds and choosing the best one.

Results : We observe that our algorithm is competitive with respect to CLUB, and is superior compared
to the baseline where each agent is playing an independent copy of OFUL. In particular, we observe either as
the clusters become more imbalanced, or as the number of users increases, CMLB has a superior performance
compared to CLUB. Furthermore, since CMLB only clusters users logarithmically many number of times,
its run-time is faster compared to CLUB.

6.2 Last.FM Dataset

Data : LastFM is a collection of 1892 users and 17632 artists. This dataset contains records of (user,
artist, tags) denoting that a user listened to an artist and assigned a tag. We convert this into a multi-
agent recommendation task, identical to the setting considered in [GLZ14] and [CBGZ13]. We break down
all tags into atomic units, exactly as suggested in [GLZ14, CBGZ13], and assign to every artist, the collection
of assigned atomic tags by all users. We then extract the top 25 principal components from the tf-idf matrix
of artists and atomic tags as the context vectors for artists. Thus, each artist is a 25 dimensional vector.
The reward for a (user,artist) pair is 1 if present in the dataset; else 0.

Setup : We consider a time-horizon of 10000 - CMLB was simulated for 10000 rounds and CLUB until
all users had taken 10000 steps. At a given time instant, a set of 25 randomly sampled items was shown as
contexts for CMLB. For CLUB, we first chose a user by picking them in a round robin fashion, and choose
24 items at random and one item at random from among those the user had listened to. This way, we ensure
that at each time, the best reward for CLUB is at-least one. However, for CMLB, as at each time step all
users play, such a guarantee cannot be made. This makes the learning setting harder for CMLB since at
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Figure 2: Synthetic data, where the ground truth vectors for users are chosen as described in Section 6.3. We
observe that for small variance, PMLB outperforms the baselines, while for larger variance, the performance
of PMLB gracefully degrades and matches the baselines.

every time, a large fraction of users have the best-reward of 0, i.e., the arm separation is 0, while the best
reward is always 1 for CLUB.

Hyper-parameters : We use δ = 0.3, α = C = 0.5 for CMLB. For CLUB, we use α = 1 and α2 = 2
chosen from a burn-in period of 500 arm-pulls of all agents.

Results : We compare the two algorithms by plotting the ratio of cumulative regret to that obtained by
recommending an artist at random each time in Figure 1 in panel (e). We see that CMLB is competitive.
However, the sparsity, renders the task quite challenging and our results indicate that neither algorithms are
particularly appealing for this dataset.

6.3 Evaluation of PMLB on Synthetic Data

In simulating PMLB, we replace ALB-Norm with vanilla LinUCB. We do this, because we observe that this
simplification itself yields good empirical performance.

Data : For each plot, we consider a system where the N ground-truth θ∗ vectors are sampled inde-
pendently from N (µ, σI), the normal distribution in d dimensions with mean µ ∈ Rd, and variance σ. The
parameter µ was chosen from the standard normal distirbution in each experiement. We test performance for
different values of σ. Observe that for small σ, all the ground-truth vectors will be close-by (high structure)
and when σ is large, the ground-truth vectors are more spread out.

Setup : We compare the performance of PMLB with that of CMLB, CLUB and the baseline algorithm
of playing an independent LinUCB at each agent. The setup is identical to that described in Section 6.

Hyperparameters : For the LinUCB of PMLB, we use the same hyper-parameters as that used in
CMLB described in Section 6.1.

Observations : We observe in Figure 2 that PMLB adapts to the available structure. In the case when
σ is low, in which case every user is close to the average, the regret of PMLB is much lower compared to
the baselines. On the other hand, when σ is large, i.e., there is no structure to exploit, the regret of PMLB
is comparable to the baselines. This demonstrates empirically that PMLB adapts to the problem structure
and exploits it whenever present.

7 Societal impact in practice

Although motivated by recommendation systems, our work is theoretical in nature, and analyzes simple
caricature models to quantify the power of collaboration in an online setting. As such, we do not recommend
directly implementing our algorithms in practice. Personalization in practical recommendation systems needs
to address several challenging issues beyond average performance; for ex. is a certain user or a minority
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group of users always receiving poor performance? Quantifying and mitigating such issues is beyond this
paper’s scope, but is necessary for practical deployments.

8 Conclusion

We considered the problem of leveraging user heterogeneity to reduce regret in a multi-agent stochastic bandit
problem. We studied two frameworks – (i) a clustering framework where users within a group are identical
and, (ii) a personalization framework where users preference vectors are close to the population average.
In both cases, we give novel adaptive algorithms that, without any knowledge of the underlying instance,
provides regret guarantees that are sub-linear in T and N . We further verify this in simulations, both on
real and synthetic data. A natural avenue for future work will be to combine the two frameworks, where
users are all not necessarily identical, but at the same time, their preferences are spread out in space (for
example the perference vectors are sampled from a Gaussian mixture model). Natural algorithms here will
involve first performing a clustering on the population, followed by algorithms such as PMLB. Characterizing
performance and demonstrating adaptivity in such settings is left to future work.
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Appendix

We present the proofs of our main results in this section. Throughout this section, we assume C,C1, C2, ..., c, c1, ...
as universal constants, the value of which may change from instanc to instance.

9 Proof of Lemma 1

Here, there is a gap between the optimal parameters. In this case, suppose the Individual Learning phase

lasts for C(2) d(NT )2α

ρmin
log(1/δ) time steps. Following the analysis of OFUL [AyPS11, CMB20], alonf=g with

the condition in equation 3, after t instances, we have

‖θ̂(i)
t − θ∗1‖ ≤

D√
1 + ρmint/2

,

with probability at least 1− δ, where D = Õ(
√
d) log(1/δ).

If agents i and j fall in same cluster, we have,

‖θ̂(j) − θ̂(i)‖ ≤ 2/(NT )α.

with probability at least 1− 2δ.
Otherwise we have

‖θ̂(j) − θ̂(i)‖ ≥ ∆i − 2/(NT )α.

Now, suppose 3/(NT )α ≤ ∆i − 2/(NT )α, or in other words, ∆i ≥ 5/(NT )α. In that case,

‖θ̂(j) − θ̂(i)‖ ≥ 3/(NT )α.
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with high probability. So, if we threshold 3/(NT )α, we can find out the cluster perfectly with probability
exceeding 1−2δ. Since we want this to hold for every pair of agents, a simple union bound yields the lemma.

Since, there is no clustering error, we have

R(T ) = R(ind− learn) +R(coll − learn)

The Individual Learning phase continues until C(2) d(NT )2α

ρmin
log(1/δ) time steps. Hence, according to [CMB20],

we have

R(ind− learn) ≤ C

√
d

ρmin

(√
C(2)

d(NT )2α

ρmin
log(1/δ)

)√
log(1/δ)

≤ C1
d

ρmin
(NT )α log(1/δ)

with probability greater than 1− δ. To avoid clutter, we have only considered the leading term in the above
regret.

We now characterize the regret in the collaborative learning phase. Here, the regret depends on the
cluster size. Since the center averages the mean reward from all the users in a cluster, it effectively reduces
the noise variance by a factor of the cluster size. Hence, the regret upper bound is we have (using [CMB20]),

R(coll − learn) ≤ C1

√
d

ρmin

√T − d(NT )2α

ρmin
log(1/δ)

piN

√log(1/δ)

with probability at least 1− δ. Since, the size of the i-th cluster is pi.
Hence, with probability at least 1− 2δ total regret is given by

R(T ) ≤ C1

 d

ρmin
(NT )α +

√
d

ρmin

√T − d(NT )2α

ρmin
log(1/δ)

piN

 log(1/δ).

Suppose α satisfies

α ≤ 1

2

 log
[
ρminT
dpiN

]
log(NT )

 .

Then, the first term in the above regret expression can be upper bounded by the second term, and the
resulting regret is given by

R(T ) ≤ C

(√
d

ρmin

√
T

piN

)
log(1/δ)

with probability at least 1− 2δ.

10 Proof of Lemma 2

In this case, we have ∆i ≤ 5/(NT )α. In this case, we show that the maximal-cluster subroutine of Algorithm 2
treats the neighboring clusters of cluster i, also together with i, as a single cluster, with high probability.
It may happen that some of the clusters are left out owing to being far from cluster i. Let S be the set
of cluster indices that Algorithm 2 clubs with cluster i. It is easy to see maxj∈S ‖θ∗i − θ∗j ‖ ≤ 5L/(NT )α;
otherwise we will be in separable cluster setting.
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Note that in this case, we have no high probability guarantees on the cluster assignment by Algorithm 2.
However, in this situation also, we argue that the regret suffered by the users are not very large. This
is because the maximum separation between the clusters (and hence the clustering error) is O(L/(NT )α),
which is quite small.

Let us now focus on the regret upper-bound. The regret is given by

R(T ) = R(ind− learn) +R(coll − learn) +R(cluster − error)

The first term comes from the initial phase of our algorithm. The second term comes after the (one-phase)
clustering, and thereby exploiting the clustered OFUL algorithm. The third term comes when the algorithm
makes an error in parameter estimates. Here Algorithm 2 clubs several clusters with cluster i, and hence
one needs to address the clustering error. This clustering error indeed accumulates over the rest of the play.

The regret in the individual learning follows analysis similar to Lemma 1. We obtain

R(ind− learn) ≤ C

√
d

ρmin

(√
C(2)

d(NT )2α

ρmin
log(1/δ)

)√
log(1/δ)

≤ C1
d

ρmin
(NT )α log(1/δ)

with probability greater than 1− δ.
Let us now consider the collaborative learning phase. In this case, the maximal-cluster subroutine of

CMLB treats the neighboring clusters of cluster i, also together with i, as a single cluster, with high proba-
bility. It may happen that some of the clusters are left out owing to being far from cluster i. Let S be the
set of cluster indices that Algorithm 2 clubs with cluster i. It is easy to see maxj∈S ‖θ∗i − θ∗j ‖ ≤ 5L/(NT )α;
otherwise we will be in Case I (separable clusters).

Note that in this case, we have no high probability guarantees on the cluster assignment by CMLB.
However, in this situation also, the regret suffered by the users are not very large. This is because the
maximum separation between the clusters (and hence the clustering error) is maxj∈S ‖θ∗i − θ∗j ‖ ≤ 5/(NT )α.
Furthermore, since we have no control on how many clusters CMLB club, in the worst case, the minimum
cluster size will be p∗N (the input size parameter to the CMLB subroutine). Hence, we obtain

R(coll − learn) ≤ C

√
d

ρmin

√T − d(NT )2α

ρmin
log(1/δ)

p∗N

√log(1/δ)

with probability at least 1− δ.
We now characterize the regret from the cluster miss-specification. This term occurs since ∆ ≤ 5/(NT )α.

For agent i, from the OFUL algorithm (see [CMB20, AyPS11], we see that the regret in linearly dependent
on θ∗1 .

Hence, following the regret analysis of stochastic linear bandits (see [CMB20], using triangle inequality,
and the condition maxi 6=j ‖θ∗i − θ∗j ‖ ≤ 5L/(NT )α), we have

R(cluster − error) ≤ CL

T − d(NT )2α

ρmin
log(1/δ)

(NT )α

 .

Now, combining all 3 components, we have

R(T ) ≤ C1
d

ρmin
(NT )α log(1/δ) + C2

√
d

ρmin

√T − d(NT )2α

ρmin
log(1/δ)

p∗N

√log(1/δ)

+ C3L

T − d(NT )2α

ρmin
log(1/δ)

(NT )α

 .
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Rewriting, we have

R(T ) ≤ C2

√
d

ρmin

√T − d(NT )2α

ρmin
log(1/δ)

p∗N

√log(1/δ)

+ C3L

(
T

(NT )α

)
+ (C1 − C3L)

T − d(NT )2α

ρmin
log(1/δ)

(NT )α

 .

Since L ≥ 1, choosing C3 > C1, we obtain

R(T ) ≤ C2

√
d

ρmin

√T − d(NT )2α

ρmin
log(1/δ)

p∗N

√log(1/δ) + C3

(
T

(NT )α

)
.

Now, suppose α = 1
2 − ε, where ε is a positive constant arbitrarily close to 0. In that case, we obtain

R(T ) ≤ C

L(T 1
2 +ε

N1−ε

)
+

√
d

ρmin

√T − d(NT )2α

ρmin
log(1/δ)

p∗N

√log(1/δ)


≤ C

[
L

(
T

1
2 +ε

N1−ε

)
+

√
d

ρmin

(√
T

p∗N

)√
log(1/δ)

]

with probability at least 1− 4
(
N
2

)
δ.

11 Special Case: all clusters are close

Let us consider the pairwise differences this setting where we treat all the agents as one big cluster. Without
loss of generality, we focus on {‖θ̂(i)−θ̂(j)‖}j 6=i, and assume that the agent belongs to cluster 1 with parameter
θ∗1 . In this setting, if the j-th agent falls in cluster 1, we have

‖θ̂(j) − θ̂(i)‖ ≤ 2/(NT )α.

with probability at least 1− 2δ. Otherwise, we obtain

‖θ̂(j) − θ̂(i)‖ ≤ 2/(NT )α + max
i,j
‖θ∗i − θ∗j ‖

≤ 3/(NT )α

with probability exceeding 1− 2δ. Ignoring the constants for now, if we have

max
j 6=i
{‖θ̂(i) − θ̂(j)‖} ≤ 3/(NT )α,

then with probability at least 1 − 2
(
N
2

)
δ, and everyone belongs to the same cluster. So, we can put the

threshold as 3/(NT )α to identify whether there is a cluster structure present or not.
The regret computation in this setup follows from Lemma 2, with 2 differences:

(a) The clustering error is maxi,j ‖θ∗i − θ∗j ‖ ≤ 1/(NT )α. Note that order-wise it is same as the misclustering
error for Lemma 2.
(b) Here, since all the clusters are close and CMLB puts everyone in the same cluster, the collaborative

learning gain will be
√

1
N . Hence, the regret bound follows from Theorem 2 with these modifications.

18



12 Analysis of SCLB in Algorithm 1

Proof of Theorem 1: Minimum Cluster size is larger than 5
(NT )α

We give the proof in the case when ∆i >
5

(NT )α . The other setting follows identically. In each phase

i, the size parameter used in Line 3 of Algorithm 1 is i−2. Thus for all phases i ≥ d 1√
pe, the input size

parameter to Algorithm 1 invoked in Line 3 of Algorithm 1 is correct, i.e., i−2 ≤ p, and thus satisfies the
conditions of Lemma 1.

In the rest of the proof, denote by i∗ := d 1√
pe and by Ti = 2i, for all i ≥ 1. Lemma 2 states that, for any

i ≥ i∗, the regret incurred by any agent in phase i satisfies

R(Ti) ≤ C1

 d

ρmin
(NTi)

α +

√
d

ρmin


√
Ti − d(NTi)2α

ρmin
log(2i/δ)

i−2N

 log(2i/δ), (4)

with probability at-least 1 − 4
(
N
2

)
2−iδ. We now use a simple regret decomposition and an union bound to

conclude the proof of Theorem 1.
Observe that, in a time horizon of T , there are at-most dlog2(T )e number of phases. The total regret can

be decomposed as

R(T ) ≤
dlog2(T )e∑
i=1

R(Ti),

≤
i∗∑
i=1

2i +

dlog2(T )e∑
i=i∗

R(Ti),

≤ 2i
∗+1 +

dlog2(T )e∑
i=i∗

R(Ti).

In the first equality, we upper bound by assuming that the agent incurs a regret of 1, in all time steps till

phase i∗. Now from an union bound, we can conclude that with probability at-least 1−
∑dlog2(T )e
i=1 cN22−iδ ≥

1− 2cN2δ, Equation (4) is satisfied for all i ≥ i∗.
Combining the above facts, along with the definition that Ti = 2i, we have,

R(Ti) ≤ 2i
∗+1 + C log

(
2

δ

)[ dlog2(T )e∑
i=1

(
dNα

ρmin
i2iα +

√
d

ρminN
i2
√

2i
)]
,

≤ 2i
∗+1 + C1 log

(
2

δ

)
log2(T )

[ dlog2(T )e∑
i=1

(
dNα

ρmin
2iα +

√
d

ρminN

√
2i
)]

with probability at-least 1−2cN2δ. The second inequality follows by upper bounding i ≤ dlog2(T )e. Observe

from the definition of i∗ that 2i
∗+1 ≤ 4

(
2

1√
p

)
, the regret is bounded by

R(T ) ≤ 4
(

2
1√
p

)
+ C2 log

(
2

δ

)
log2(T )

[
(NT )α

d

ρmin
+

√
T

d

ρminN

]
.

Here C1, C2 are universal constants.
Theorem 2: Minimum Cluster size is smaller than or equal to 5

(NT )α

Following the identical steps as for Case I, where we use Lemma 2 to bound the regret in a phase, we
get that with probability at-least 1− 2cN2δ

R(T ) ≤ C1L log2(T )21−αT
1−α

Nα
+ C2 log2(T )

√
T

d

Nρmin
log(2/δ).
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13 Proof of Theorem 3

Collaboratively learn the common representations: Recall the setup of collaborative learning; at
each time t, out of K contexts available at the center, {βr,t}Kr=1, the center chooses a context vector, (call
it βr,t, corresponding to the r-th arm), and broadcasts to all the agents. Agent i, using the context βr,t,
observes the following reward:

y
(i)
t = 〈βr,t, θ∗i 〉+ ηi,t,

and sends this to the center. Similarly, all the N agents observes their reward and send those to the center.
The center then averages this rewards and obtain

1

N

N∑
l=1

y
(l)
t = 〈βr,t,

1

N

N∑
l=1

θ∗l 〉+
1

N

N∑
l=1

ηl,t.

Since, we are averaging i.i.d noise, the variance decreases by a factor of N . Now, based on the average
reward, the center choosing the next arm by playing the stochastic contextual Bandit algorithm OFUL.
Hence, in this phase, the center indeed learns the parameter θ̄∗ := 1

N

∑N
l=1 θ

∗
l . We let this phase run for

√
T

rounds, and let θ̂∗ be the corresponding estimate. Provided, T > τ2
min(δ), from [CMB20], we have,

‖θ̂∗ − θ̄∗‖ ≤ Õ

(√
d

ρminN
√
T

)
log(1/δ),

with probability at least 1− δ. The corresponding regret (call it Rc,1) is

Rc,1 = Õ

√ d
√
T

ρminN

 log(1/δ),

with probability at least 1− δ.
Note that additional to the above, we incur a regret since instead of learning θ∗i , we are actually learning

θ̄∗. This is equivalent to clustering with miss-specification. Following the proofs similar to Section 4, we
obtain

Rc,2 = ‖θ∗i − θ̄∗‖T1 ≤ εi
√
T ,

where we use the fact that ‖θ∗l ‖ ≤ 1 for all l ∈ [N ]. Hence, the total regret in this phase is

Rc,1 +Rc,2 ≤ Õ

√ d
√
T

ρminN

 log(1/δ) + εi
√
T ,

with probability at least 1− δ.

Personal Learning: At each time t, out of K contexts available at the center, {βr,t}Kr=1, suppose the center
chooses a context vector, βr,t, (corresponding to the r-th arm) and recommends it to agent i. Thereafter,

agent i generates the reward y
(i)
t = 〈βr,t, θ∗i 〉 + ξi,t, and sends it to the center. Subsequently, the center

calculates the corrected reward

ỹ
(i)
t = y

(i)
t − 〈βr,t, θ̂∗〉.

Note that the center has the information about (βr,t, θ̂
∗) and so it can compute ỹ

(i)
t . With this shift, the

center basically learns the vector θ∗i − θ̂∗.
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In this phase we use the ALB-norm algorithm of [GSK21]3. Note that the ALB-norm algorithm is a norm
adaptive algorithm, which is particularly useful when the parameter norm is small. ALB-norm uses the OFUL
algorithm of [CMB20, AyPS11] repeatedly over epochs. At the beginning of each epoch, it estimates the
parameter norm, and runs OFUL with the norm estimate (see [GSK21, Algorithm 1]). Hence, it is shown in
[GSK21, Algorithm 1] that while estimating the parameter Ψ∗, with high probability, the regret of ALB-norm
is

RALB-norm ≤ ‖Ψ∗‖ ROFUL.

In Appendix 15, we present an analysis of shifted OFUL. In particular we show that shifts (by a fixed

vector) can not reduce the regret (which is intuitive). Note that we learn θ̂∗ in the common learning phase,
and fix it throughout the personal learning phase. Hence, conditioned on the observations of the common
learning phase, θ̂∗ is a fixed (deterministic) vector. Also,

‖θ∗i − θ̂∗‖ ≤ ‖θ∗i − θ̄∗‖+ ‖θ̂∗ − θ̄∗‖

≤ εi + Õ

(√
d

ρminN
√
T

)
log(1/δ),

with probability at least 1 − δ. Hence, using Lemma 6 of Appendix 15, the regret in the personal learning

phase (call it R
(p)
i ) is given by

R
(p)
i ≤ Õ

(
‖θ∗i − θ̂∗‖

√
d(T −

√
T ) log(1/δ)

)
,

with probability at least 1− cδ − 1
poly(T ) , provided d ≥ C log(K2T ). Substituting, we obtain

R
(p)
i ≤ Õ

([
εi + Õ

(√
d

ρminN
√
T

)
log(1/δ)

]√
d(T −

√
T ) log(1/δ)

)

≤ Õ

([
εi +

√
d

ρminN
√
T

]
√
dT

)
log2(1/δ),

with probability exceeding 1− cδ − 1
poly(T ) .

Total Regret: We now characterize the total regret of agent i. We have

Ri(T ) = R
(c,1)
i +R

(c,2)
i +R

(p)
i

≤ Õ

√ d
√
T

ρminN

 log(1/δ) + εi
√
T + Õ

([
εi +

√
d

ρminN
√
T

]
√
dT

)
log2(1/δ)

≤ Õ

[(
εi
√
T + εi

√
dT
)

+ T 1/4

(√
d

ρminN
+

√
d2

ρminN

)]
log2(1/δ)

≤ Õ

[
εi
√
dT + T 1/4

√
d2

ρminN

]
log2(1/δ)

with probability at least 1− c1δ − 1
poly(T ) .

3In particular we use ALB-norm algorithm of [GSK21], with τ = O(1), and zero arm biases, and hence no pure exploration
to estimate the arm biases.
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14 Proof of Corollary 1

In order to obtain the expected regret, one writes expectation as an integral of the tail probabilities and use
the high probability bound to compute the tail probability. With this, in the common learning phase, we
have

ER(c,1)
i ≤ Õ

√ d
√
T

ρminN

 ,

and

ER(c,2)
i ≤ εi

√
T .

In the personal learning phase we use Corollary 2 of Appendix 15, which says that shifting makes the regret
worse in expectation. Hence, using [GSK21, Theorem 1] and converting it to an expected regret, we have

ER(p)
i ≤ Õ

([
εi +

√
d

ρminN
√
T

]
√
dT

)
.

The final regret bound follows from summing up the above 3 expressions.

15 Shifted OFUL Regret

In this section, we want to establish a relationship between the regret of the standard OFUL algorithm and
the shift compensated algorithm. We define the shifted version of OFUL below.

Definition 3. The OFUL algortihm is used to make a decision of which action to take at time-step t,
given the history of past actions X1, · · · , Xt−1 and observed rewards Y1, · · · , Yt−1. The Γ shifted OFUL is
an algorithm identical to OFUL that describes the action to take at time step t, based on the past actions

X1, · · · , Xt−1 and the observed rewards Ỹ
(Γ)
1 , · · · , Ỹ (Γ)

t−1, where for all 1 ≤ s ≤ t− 1, Ỹs = Ys − 〈Xs,Γ〉.

Definition 4. For a linear bandit instance with unknown parameter θ∗, and a sequence of (possibly random)

actions X1:T := X1, · · · , XT , denote by RT (X1:T ) :=
∑T
t=1 max1≤j≤K〈βj,t −Xt, θ

∗〉.

Definition 5. For a linear bandit system with unknown parameter θ∗, and a sequence of (possibly random)

actions X1:T := X1, · · · , XT , denote by R(Γ)
T (X1:T ) :=

∑T
t=1 max1≤j≤K〈βj,t −Xt, θ

∗ − Γ〉.

Proposition 1. Suppose for a linear bandit instance with parameter θ∗, an algorithm plays the sequence of
actions X1, · · · , XT , then

RT (X1:T ) ≤ R(Γ)
T (X1:T ) +

T∑
t=1

(
〈Xt − argmax

β∈{β1,t,··· ,βK,t}
〈β, θ∗〉,Γ〉

)
.

Proof. From the definition of R(Γ)
T , we can write the regret as

R(Γ)
T (X1:T ) =

T∑
t=1

max
1≤j≤K

〈βj,t −Xt, θ
∗ + Γ〉,

(a)

≤
T∑
t=1

max
1≤j≤K

〈βj,t, θ∗〉+ 〈β∗t ,Γ〉 − 〈Xt, θ
∗〉 − 〈Xt,Γ〉, (5)

where, β∗t := argmaxβ∈{β1,t,··· ,βK,t}〈β, θ
∗〉. The inequality (a) follows from the following elementary fact.
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Lemma 3. Let X be a compact set, and functions f, g : X → R, such that supx∈X |f(x)| < ∞ and
supx∈X |g(x)| <∞. Then,

max
x∈X

(f(x) + g(x)) ≥ max
x∈X

f(x) + min
x∈X

g(x).

that Rewriting Equation (5), we see that

R(Γ)
T (X1:T ) ≤ RT +

T∑
t=1

〈β∗t −Xt,Γ〉,

and thus the proposition is proved.

Corollary 2. If for every time t ≥ 1, the set of K context vectors β1,t, · · · , βK,t are all 0 mean random
variables, then

E[RT ] ≤ E[R(Γ)
T ].

Corollary 3. Suppose for all time t, argmaxβ∈{β1,t,··· ,βK,t}〈β, θ
∗〉 = argmaxβ∈{β1,t,··· ,βK,t}〈β,Γ〉. Then,

RT (X1:T ) ≤ R(Γ)
T (X1:T ).

Proof. From the hypothesis of the theorem, we can observe the following,

T∑
t=1

(
〈Xt − argmax

β∈{β1,t,··· ,βK,t}
〈β, θ∗〉,Γ〉

)
=

T∑
t=1

(
〈Xt − argmax

β∈{β1,t,··· ,βK,t}
〈β,Γ〉,Γ〉

)
,

≤ 0.

Plugging the above bound into Proposition 1 completes the proof.

15.0.1 High Probability Bound on R(Γ)
T

Lemma 4. Suppose the K context vectors β1, · · · , βK are such that for all i, ||βi|| ≤ 2 and for all i 6= j,
|〈βi − βj , θ∗〉| ≥ 4||θ∗ − Γ||, where θ∗ is the unknown linear bandit parameter and Γ is a fixed vector. Then

argmax
1≤j≤K

〈βj , θ∗i 〉 = argmax
1≤j≤K

〈βj ,Γ〉.

Proof. We will prove the following more stronger statement. Let i 6= j ∈ [K] be such that 〈θ∗, βi〉 ≥ 〈θ∗, βj〉.
Then, under the hypothesis of the proposition statement, we have 〈θ∗, βi − βj〉 ≥ 4||θ∗ − Γ||. Thus, the
following chain holds,

〈βi − βj ,Γ〉 = 〈βi − βj , θ∗〉+ 〈βi − βj ,Γ− θ∗〉,
≥ 4||θ∗ − Γ||+ 〈βi − βj ,Γ− θ∗〉,
≥ 4||θ∗ − Γ|| − ||βi − βj ||||Γ− θ∗||,
≥ 0.

The first inequality follows from the hypothesis of the proposition statement, the second follows from Cauchy
Schwartz inequality and the last follows from the fact that ||βi − βj || ≤ 2. Thus, we have shown that under
the hypothesis of the Proposition, the ordering of the coordinates whether by inner product with θ∗ or with
Γ remains unchanged. In particular, the argmax is identical.
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Lemma 5. Let θ∗ be a fixed vector with ‖θ∗‖ ≤ 1, and Γ ∈ Rd be any arbitrary vector such that ||θ∗−Γ|| ≤ ψ,
for some ψ < 1

2
√

2
. Let β1, · · · , βK be i.i.d. vectors, each distributed as the normalized standard Gaussian

vector in d dimensions, i.e., β1 ∼ N
(
0, 1

d Id
)
. Then,

P
[
argmax
1≤j≤K

〈βj , θ∗i 〉 = argmax
1≤j≤K

〈βj ,Γ〉
]
≥
(

1−
(
K

2

)
e−

d
4 (1−8ψ2)2 −Ke−

√
5−1
2 d

)
.

Proof. Denote by the Good event E :=
{

argmax1≤j≤K〈βj , θ∗i 〉 = argmax1≤j≤K〈βj ,Γ〉
}

From Lemma 4, we

know that a sufficient condition for event E to hold is that for all i 6= j, we have

∣∣∣∣〈θ∗, βi − βj〉∣∣∣∣ ≥ 2||θ∗ − Γ||

and for all i, ||βi|| < 2. Thus, from a simple union bound, we get

P[Ec] ≤
∑

1≤i<j≤K

P
[∣∣∣∣〈θ∗, βi − βj〉∣∣∣∣ ≤ 4||θ∗ − Γ||

]
+

K∑
i=1

P[||βi|| ≥ 2],

=

(
K

2

)
P
[∣∣∣∣〈θ∗, β1 − β2〉

∣∣∣∣ ≤ 4||θ∗ − Γ||
]

+KP[||β1|| ≥ 2].

The second equality follows from the fact that β1, · · · , βK are i.i.d. Now, since ||θ∗|| ≤ 1, we have from

Cauchy Schwartz that, almost-surely,

∣∣∣∣〈θ∗, β1 − β2〉
∣∣∣∣ ≤ ||β1 − β2||. Thus,

P [|〈θ∗, β1 − β2〉| ≤ 4||θ∗ − Γ||] ≤ P[||β1 − β2|| ≤ 4||θ∗ − Γ||],
≤ P[||β1 − β2|| ≤ 4ψ],

= P[||β1 − β2||2 ≤ 16ψ2],

= P
[
d

2
||β1 − β2||2 ≤ 8ψ2d

]
,

(a)

≤ e−
d
4 (1−8ψ2)2

The first inequality follows from Cauchy Schwartz, and the fact that ||θ∗|| ≤ 1. The last inequality follows
from the classical anti-concentration inequality of Massart and Laurent [LM00]. As β1− β2 ∼ N (0, 2d−1Id).
Thus, d

2 ||β1 − β2||2 is a Chi-square distributed random variable with d-degrees of freedom. The inequality
in [LM00] gives that for any χ2 random variable with d degrees of freedom U , and x ∈ R+,

P[U ≤ d− 2
√
dx] ≤ e−x.

Now, plugging in x = d
4 (1− 8ψ2)2 in the above inequality yields step (a).

Finally, we also need to ensure that the context vectors β1, · · · , βK have norms bounded by 2
√
d. This

can also be similarly be bounded by the upper tail inequality as

P[||β1|| ≥ 2] = P[d||β1||2 ≥ 4d],

(b)

≤ e−
√

5−1
2 d.

The inequality (b) follows from the upper-tail concentration bound for χ2 random variables. Observe that
d||β1||2 is a χ2 random variable with d degrees of freedom. For any χ2 random variable U is a with d degrees
of freedom, and for any x > 0, it is known that [LM00]

P[U ≥ d+ 2x+ 2
√
dx] ≤ e−x.

Substituting x =
√

5−1
2 in the above equation yields step (b). Putting this all together concludes the proof.
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Lemma 6. Consider a linear bandit instance with parameter θ∗ with ||θ∗|| ≤ 1 and the context vectors at
each time are sampled uniformly and independently from the scaled normal distribution in d dimensions,
i.e., the contexts are i.i.d. across time and arms from N

(
0, d−1Id

)
. Let Γ ∈ Rd be such that ||θ∗ − Γ|| ≤ ψ

with ψ < 1
2
√

2
, and X1:T = (X1, · · · , XT ) be the set of actions chosen by the Γ shifted OFUL. Then, with

probability at-least
(

1−
(
K
2

)
e−

d
4 (1−8ψ2)2 −Ke−

√
5−1
2 d

)
,

RT (X1:T ) ≤ R(Γ)
T (X1:T ).

Proof. This follows by combining Lemma 5 and 4.
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