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Model Selection for Generic Contextual Bandits
Avishek Ghosh, Abishek Sankararaman and Kannan Ramchandran

Abstract—We consider the problem of model selection for
the general stochastic contextual bandits under the realizability
assumption. We propose a successive refinement based algorithm
called Adaptive Contextual Bandit (ACB), that works in phases
and successively eliminates model classes that are too simple to
fit the given instance. We prove that this algorithm is adaptive,
i.e., the regret rate order-wise matches that of any provable
contextual bandit algorithm (ex. [1]), that needs the knowledge
of the true model class. The price of not knowing the correct
model class turns out to be only an additive term contributing
to the second order term in the regret bound. This cost possess
the intuitive property that it becomes smaller as the model class
becomes easier to identify, and vice-versa. We also show that
a much simpler explore-then-commit (ETC) style algorithm also
obtains similar regret bound, despite not knowing the true model
class. However, the cost of model selection is higher in ETC as
opposed to in ACB, as expected. Furthermore, for the special case
of linear contextual bandits, we propose specialized algorithms
that obtain sharper guarantees compared to the generic setup.

Index Terms—Model Selection, Contextual Bandits, Linear
Bandits

I. INTRODUCTION

The contextual Multi Armed Bandit (MAB) problem is a

fundamental online learning setting capturing the exploration-

exploitation trade-offs associated with sequential decision

making (c.f. [2], [3]). It consists of an agent, who at each

time is shown a context by nature, and subsequently makes an

irrevocable decision from a set of available decisions (arms)

and collects a noisy reward depending on the arm chosen and

the observed context. The agent initially has no knowledge

of the rewards of the various actions, and has to learn by

repeated interaction over time, the mapping from the set of

context and arms to rewards. The agent’s goal is to minimize

regret —the expected difference between the reward collected

by an oracle that knows the expected rewards of all actions

under all possible observed contexts and that of the agent.

The recent books of [4], [5] and the references therein provide

comprehensive state-of-art on the general bandit problem.

We study the model selection question in general stochastic

contextual bandits (c.f. [6], [7], [1], [8]). Practically, model

selection in contextual bandits play a key role in applications

such as personalized recommendation systems, which we

sketch in the sequel in Section I-B. At a high-level, model

selection is useful in deciding the function class (for example

neural network architecture) to use to learn the mapping

from contexts to rewards. Smaller function class such as
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a logistic regression although are easier to train and tune

hyper-parameters, may fit poorly to data (high statistical bias).

On the other hand, very deep neural networks although in

principle can achieve high statistical accuracy, incur overheads

such as complex hyper-parameter tuning and challenges of

explainability. The model selection problem formalizes this

trade-off and defines an optimal choice (see Section I-B).

Formally, the contextual bandit setting is described as

follows. At the beginning of each round t ∈ [T ], nature

sequentially chooses a context xt ∈ X and a reward function

rt : A → [0, 1] to an agent, who then subsequently takes

an action at ∈ A from a finite set, and obtains a reward

rt(at). In the stochastic setting (the focus of the present

paper), the set of contexts and reward functions {xt, rt}Tt=1 are

generated in an i.i.d. fashion from a distribution D(x, r) which

is apriori unknown to the agent. At each time t, conditional

on the context xt and the action taken at, the observed

reward rt(at) is independent of everything else, with mean

E[rt(at)|xt, at] = f∗(xt, at), where f∗ : X × A → [0, 1],
is an apriori unknown function. The agent is given a finite,

nested family (Fm)Mm=1 of hypothesis classes1, where 1 ≤
m1 < m2 ≤ M implies Fm1

⊆ Fm2
. Further, there exists

an optimal class d∗ := inf{1 ≤ m ≤ M : f∗ ∈ Fm}, i.e.,

Fd∗ is the smallest hypothesis class containing the unknown

reward function f∗. The agent is not aware of d∗ apriori and

needs to estimate it. Model selection guarantees then refers to

algorithms for the agent whose regret scales in the complexity

of the smallest hypothesis class (Fd∗ in the above notation)

containing the true model, even though the algorithm was not

aware apriori.

In the case when the agent has the knowledge of Fd∗ but

does not know f∗, [1] recently obtain computationally efficient

algorithm FALCON, that achieves regret-rate scaling as
√
T .

Using realizibility, i.e., f∗ ∈ Fd∗ , it was shown in [1], that

the stochastic contextual bandit can be reduced to an offline

regression problem, which can be efficiently solved for many

well known function classes beyond linear (eg. the set of all

convex functions [9]). The regret of FALCON was shown to

scale proportional to the square root of the complexity of the

function class Fd∗ times T , the time horizon. In the case when

Fd∗ is a finite set, the complexity equals the logarithm of the

cardinality, while if the class is infinite (either countable or

uncountable), complexity is analogously defined (c.f. Section

V).

The study in this paper is reliant on two assumptions: (i)

Realizability (Assumption 1), —the true model belongs to

at-least one of the many nested hypothesis classes, and (ii)

Separation (Assumption 2) —the excess risk under any of

the plausible model classes not containing the true model is

1We use the term hypothesis class and model class interchangebly

http://arxiv.org/abs/2107.03455v2
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strictly positive. Realizability, has been a standard assumption

in stochastic contextual bandits ([10], [8], [1]), and is used in

our setup to define the optimal model class that needs to be

selected. The separation assumption is needed to ensure that

not selecting a relizable model class leads to regret scaling

linear in time. The separation assumption is analogous to that

used in standard multi-armed bandits [4], where the mean

reward of the best arm is strictly larger than that of the second

best arm.

A negative result and the need of separability: In [11],

the authors provide a negative answer to the open problem

of [12], implying that it is not possible to obtain a regret

which is order-wise identical to an oracle who knows the true

model class Fd∗ . In particular, [11] shows that there always

exists an instance where the regret in the smallest realizable

class is (order-wise) larger than what is achievable with an

oracle2. This implies that if we aim to obtain oracle-optimal

regret, we should exploit certain structures in the problem.

In this paper, we achieve this by the separability assumption,

which comes naturally in statistical learning problems3. This

assumption should be thought as a first step towards obtaining

(oracle) optimal regret.

In parallel independent work, [13] also study model selec-

tion problem, under the same assumptions of realizability and

separation that we make. They propose ModIGW algorithm

that is built on FALCON and shares similarity to our algorithm

ACB; both algorithms run in epochs of doubling length, where

at the beginning of each epoch, an appropriate model class is

selected, and the rest of the epoch consists of playing FALCON

on the selected model class. In order to select the appropriate

class, the nested structure of model classes along with the

fact that the largest class M is realizable by definition is

used. The regret guarantees are similar for both ACB and

ModIGW, with ModIGW having a better second order term,

as they have a stronger assumption on the regression oracle.

Remark 7 highlights that under the same assumption on the

regression oracle, the second order term of ACB will match

(order-wise) that of ModIGW. However, our proposed method,

ACB can be viewed as a meta-algorithm, that uses any state-

of-art contextual bandit algorithm, ACB as a black-box (see

Algorithm 2). In particular ACB works with any provable

contextual bandit algorithm—a feature that ModIGW does

not posses. Thus any improvement to the contextual bandit

problem, automatically yields a model selection result through

ACB. Moreover, our proof techniques are completely different

to that of [13].

Finally in Sections VI-A and VI-B, we consider the spe-

cialized case where f∗(.) assumes a linear form and thus

parameterized by θ∗ ∈ R
d. We note that in this setup the

sparsity, ‖θ∗‖0 naturally forms a nested hypothesis class,

where Fi denotes the class of linear functions with sparsity

i. So, we have F1 ⊆ F2 ⊆ . . . ⊆ Fd and M = d.

We propose and analyze a novel algorithm, namely Adaptive

Linear Bandit-Dimension (ALB-Dim), which may be thought

2The paper allows the hypothesis classes to be adversarily designed and
hence in general requires a lot of exploration for model selection.

3The separability assumption restricts the amount the exploration needed,
dependent on the gap or separation.

as a variant of the generic ACB. We show that the regret of

ALB-Dim scales linearly in the unknown cardinality of the

support of θ∗. The regret of our algorithm matches that of

an oracle who knows the support of θ∗ ([14],[15]), thereby

achieving model selection guarantees.

We emphasize that the setting with dimension as a measure

of complexity was also studied by [14]. However, our regret

bounds are stronger (by a logarithm in d factor). Furthermore,

our algorithmic paradigm is more broadly applicable – for

eg. we can handle both the cases with finite as well as infinite

arms, and obtain similar model selection regret guarantees that

match the regret of an oracle that knows the true dimension.

Model selection with dimension as complexity measure was

also recently studied by [10], in which the classical contextual

bandit ([3]) with a finite number of arms was considered.

We clarify here that although our results for the finite arm

setting yields a better (optimal) regret scaling with respect to

the time horizon T and the support of θ∗ (denoted by d∗), our

guarantee depends on a problem dependent parameter and thus

not uniform over all instances. In contrast, the results of [10],

although sub-optimal in d∗ and T , is uniform over all problem

instances. Closing this gap is an interesting future direction.

We emphasize here that our specialized algorithm,

ALB-Dim does not require any (explicit) separability assump-

tion across hypothesis classes similar to the generic case. Also,

our setup here can handle the case with finite as well as infinite

number of arms/actions. Moreover, we show in Sections VI-A

and VI-B that the regret of ALB-Dim is independent (order-

wise) of the number of actions, and hence for the finite action

setup, it improves the regret of ACB by a factor of O(
√
|A|).

A. Our Contributions

1) A Successive Refinement Algorithm for General Con-

textual Bandit: We present Adaptive Contextual

Bandit (ACB), a meta algorithm that uses FALCON as

a black box and show that its regret rate matches (order-

wise), FALCON’s ([1]), the state of art algorithm in contextual

bandits which assumes knowledge of the true model class.

ACB proceeds in epochs, with the first step in every epoch

being a statistical test on the samples from the previous epoch

to identify the smallest model class, followed by FALCON on

this identified class in the epoch. We show that, with high

probability, eventually, ACB identifies the true model class

(Lemma 2), and thus its regret rate matches that of FALCON.

a) Cost of model selection:: The second order regret

term in ACB scales as O( log(T )
∆2 ), where ∆ > 0, is the gap

(formally defined in Assumption 2) between the smallest class

containing the true model and the highest model class not

containing the true model. This term can be interpreted as the

cost of model selection. Furthermore, as this term is inversely

proportional to the gap ∆, we see that an ‘easier’ instance

(∆ being high), incurs lower cost of model selection than an

instance with smaller ∆. Furthermore, the model selection cost

can be reduced to O( log log T
∆2 ) if T is known in advance.

2) An Explore-then-commit (ETC) algorithm: We propose

and analyze an Explore-then-commit (ETC) algorithm that

also achieves model selection, but requires knowledge of T in



IEEE TRANSACTIONS ON INFORMATION THEORY 3

advance has a larger second order regret compared to ACB .

We show that a ETC algorithm also performs model selection,

i.e., has a regret rate scaling as that of FALCON on the

optimal model class. This is a conceptually simpler algorithm

compared to ACB. In ETC, the model class is estimated once

after a few rounds of forced exploration, and the rest of the

time-horizon FALCON is played on the estimated model class.

However, the cost of model selection in ETC is O(
√
T ), which

is larger than that of ACB. Nevertheless, asymptotically, a

simple ETC algorithm suffices to obtain model selection.

3) Improved Regret Guarantee with Linear Structure: In

the special setup of stochastic linear bandits, where the reward

is a linear map of the context, we propose and analyze an adap-

tive algorithm, namely Adaptive Linear Bandits-Dimension

(ALB-Dim). First we observe that in this special case, we do

not require any separability assumption. Moreover, the setup

of linear bandits can include both finite as well as infinite

number of actions. We show that the regret of ALB-Dim is

independent of the number of actions (arms), which is an

improvement over the regret of ACB. In particular, for the

finite arm setup, ALB-Dim improves the regret of ACB by a

factor of O(
√
|A|).

B. Motivating example

Model selection in contextual bandits plays a key role in

applications such as personalized recommendation systems,

which we sketch. Consider a system (such as news recommen-

dation) that on each day, recommends one out of K possible

outlets to a user. On each day, an event is realized in nature,

which can be modeled as the context vector on that day.

The true model function f∗ encodes the user’s preference; for

example the user prefers one outlet for sports oriented articles,

while another for international events. This apriori unknown

to the system and needs to learn this through repeated in-

teractions. The multiple nested hypothesis classes correspond

to a variety of possible neural network architectures to learn

the mapping from contexts (event of the day) to rewards

(which can be engagement with the recommended item). In

practice, these nested hypothesis classes range from simple

logistic regression to multi-layer perceptrons [16]. Complex

network architectures although has the potential for increased

accuracy, incurs undesirable overheads such as requiring larger

offline training to deliver accuracy gains [16], computational

complexity in hyper-parameter tuning [17] and challenges

of explainability in predictions [18], [19]. Model selection

provides a framework to trade-off between accuracy and the

overheads.

II. RELATED WORK

Model selection for MAB have received increased attention

in recent times owing to its applicability in a variety of large-

scale settings such as recommendation systems and person-

alization. The special case of linear contextual bandits was

studied in [20], [21] and [10], where both instance dependent

and instance independent algorithms achieving model selection

were given. In [20], [21], the standard OFUL algorithm of [22]

is taken as a baseline and model selection procedures are pro-

posed on top of that. In this linear bandit framework, similar

to the present paper, [10] and [21] considered the family of

nested hypothesis classes, with each class positing the sparsity

of the unknown linear bandit parameter. In this setup, [10]

proposed ModCB which uses the Exp4-IX algorithm of [23]

as a base algorithm and achieves regret rate uniformly for all

instances, a rate that is sub-optimal compared to the oracle

that knows the true sparsity. In contrast, both our paper and

[21] propose an algorithm that achieves regret rate matching

that of the oracle that knows the true sparsity. The cost of

model selection contributes only a constant that depends on the

instance but independent of the time horizon. However, unlike

ModCB, our regret guarantees are problem dependent and do

not hold uniformly for all instances. A parallel line of work on

linear bandits has focused on simple LASSO type algorithms

under strong stochastic assumptions on the distribution of the

contexts that achieve model selection guarantees [15], [24],

[25], [26], [27].

A black-box model selection framework for MABs called

Corral was proposed in [28], where the optimal algorithm

for each hypothesis class is treated as an expert and the task

of the forecaster is to have low regret with respect to the best

expert (best model class). The generality of this framework

has rendered it fruitful in a variety of different settings; for

example [28], [29] considered unstructured MABs, which was

then extended to both linear and contextual bandits and linear

reinforcement learning in a series of works [30], [31] and

lately to even reinforcement learning [32]. However, the price

for this versatility is that the regret rates the cost of model

selection is multiplicative rather than additive. In particular,

for the special case of linear bandits and linear reinforcement

learning, the regret scales as
√
T in time with an additional

multiplicative factor of
√
M , while the regret scaling with

time is strictly larger than
√
T in the general contextual

bandit. Since this approach treats all the hypothesis classes

as bandit arms, and work in a (restricted) partial information

setting, they tend to explore a lot, yielding worse regret.

On the other hand, we consider all M classes at once (full

information setting) and do inference, and hence explore less

and obtain lower regret. Recently, the above idea of regret

balancing is extended to black box optimization in the context

of non-stationary Reinforcement Learning ([33]) and robust

Reinforcement Learning ([34]).

Furthermore, [36] study the problem of model selection

in RL with function approximation. Similar to the active-

arm elimination technique employed in standard multi-armed

bandit (MAB) problems [37], the authors eliminate the model

classes that are dubbed misspecified, and obtain a regret of

O(T 2/3). On the other hand, our framework is quite different

in the sense that we consider model selection for generic

contextual bandits. Moreover, our regret scales as O(
√
T ).

Adaptive algorithms for linear bandits have also been stud-

ied in different contexts from ours. The papers of [38], [39]

consider problems where the arms have an unknown structure,

and propose algorithms adapting to this structure to yield low

regret. The paper [40] proposes an algorithm in the adversarial

bandit setup that adapt to an unknown structure in the adver-
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Regret Bound Function Class Arms Base Algorithm

[20] Õ(
√
T ) M = 2, Linear Finite OFUL

[10] Õ(T 2/3(Kdm∗ )1/3) Linear Finite Exp4-IX

[35] Õ(
√
MT + dm∗

√
m∗T ) Generic Infinite CORRAL

[13] Õ(d2m∗ +
√
Kdm∗T ) Generic Finite FALCON

This paper Õ(dM +
√
Kdm∗T ) Generic Finite Generic (ACB )

TABLE I
TABLE COMPARING RELATED WORK ON MODEL SELECTION FOR CONTEXTUAL BANDITS. HERE dm∗ CORRESPONDS TO THE COMPLEXITY MEASURE

(EX. DIMENSION FOR LINEAR BANDITS, LOG CARDINALITY FOR FINITE FUNCTION CLASSES) OF THE SMALLEST HYPOTHESIS CLASS CONTAINING THE

TRUE REGRESSOR f∗ . ALSO, dM REFERES TO THE COMPLEXITY OF THE LARGEST HYPOTHESIS CLASS FM . WE SEE THAT OUR RESULTS ARE

COMPETITIVE WITH RESPECT TO THE EXISTING WORKS, AND CAN HANDLE ANY GENERIC CONTEXTUAL BANDIT ALGORITHM, ACB AS OPPOSED TO

[13] WHICH USES FALCON.

sary’s loss sequence, to obtain low regret. The paper of [41]

consider adaptive algorithms, when the distribution changes

over time. In the context of online learning with full feedback,

there have been several works addressing model selection [42],

[43], [44], [45]. In the context of statistical learning, model

selection has a long line of work (for eg. [46], [47], [48],

[49], [50] [51]). However, the bandit feedback in our setups

is much more challenging and a straightforward adaptation

of algorithms developed for either statistical learning or full

information to the setting with bandit feedback is not feasible.

III. PROBLEM FORMULATION

a) Setup:: Let A be the set of K actions, and let X ⊆ R
d

be the set of d dimensional contexts. At time t, nature picks

(xt, rt) in an i.i.d fashion from an unknown distribution

D(x, r) (see [7]), where xt ∈ X and a context dependent

rt : A → [0, 1]. All expectation operators in this section

are with respect to this i.i.d. sequence (x, r). Upon observing

the context, the agent takes action at ∈ A, and obtains the

reward of rt(at). Note that, the reward rt(at, xt) depends on

the context xt and the action at. Furthermore, it is standard

([10], [1]) to have a realizibility assumption on the conditional

expectation of the reward, i.e., there exists a predictor f∗ ∈ F ,

such that E[rt(a, x)|xt = x, a] = f∗(x, a), for all x and a.

We suppress the dependence of the reward on the context xt

and denote the reward at time t from action a ∈ A as rt(a).
In the contextual bandit literature ([7], [1]) it is generally

assumed that the true regression function f∗ is unknown, but

the function class F where it belongs, is known to the learner.

The price of not knowing f∗ is characterized by regret, which

we define now. To set up notation, for any f ∈ F , we define

a policy induced by the function f , πf : X → A as πf (x) =
argmaxa∈Af(x, a)

4, for all x ∈ X . We define the regret over

T rounds defined as

R(T ) =

T∑

t=1

[rt(πf∗(xt))− rt(at)]

Throughout this paper, we obtain high probability bounds on

R(T )

IV. MODEL SELECTION FOR GENERIC CONTEXTUAL

BANDITS

In this section, we focus on the main contribution of the

paper—a provable model selection guarantee for the (generic)

4Ties are broken arbitrarily, for example the lexicographic ordering of A

stochastic contextual bandit problem. In contrast to the stan-

dard setting, in the model selection framework, we do not

know F . Instead, we are given a nested class of M function

classes, F1 ⊂ F2 ⊂ . . . ⊂ FM . Let the smallest function

class where the true regressor, f∗ lies be denoted by Fd∗ ,

where d∗ ∈ [M ].

From the above discussion, since f∗ ∈ Fd∗ , the regret of

an adaptive contextual bandit algorithm should depend on the

function class Fd∗ . However, we do not know d∗, and our goal

is to propose adaptive algorithms such that the regret depends

on the actual problem complexity Fd∗ . First, let us write the

realizability assumption with the nested function classes.

Assumption 1 (Realizability): There exists 1 ≤ d∗ ≤M , and

a predictor f∗ ∈ Fd∗ , such that E[rt(a)|xt = x] = f∗(x, a),
for all x ∈ X and a ∈ A.

Furthermore, in order to identify the correct model class

within the given M hypothesis classes, we also require the

following separability condition. The motivation of the sepa-

rability comes from the following negative result.

Very recently, [11] provides a negative answer to the open

problem of [12], showing that it is not possible to obtain a

regret which is order-wise identical to an oracle who knows

the true model class Fd∗ . Specifically, [11] shows that there

always exists an instance where the regret in the smallest

realizable class is (order-wise) larger than of an oracle.

Assumption 2 (Separability): There exists a ∆ > 0, such

that,

inf
f∈Fd∗−1

Ex

[
inf
a∈A

[f(x, a)− f∗(x, a)]2
]
≥ ∆.

The parameter ∆ > 0 is the minimum separation across the

function classes. The expectation above is with respect to the

randomness in contexts.

Note that the identical separability condition is also wit-

nessed in [13]5. The above condition implies that there is a

(non-zero) gap, between the regressor functions belonging to

the realizable classes and non-realizable classes. Since, we

have nested structure, F1 ⊂ F2 ⊂ . . . ⊂ FM , condition on the

biggest non-realizable class, Fd∗−1 is sufficient. We emphasize

that separability condition is quite standard in statistics, spe-

cially in the area of clustering ([52]), analysis of Expectation

Maximization (EM) algorithm ([53], [54], understanding the

5This is equivalent to
inff∈Fd∗−1

Ex
[
infq:X→∆(A) infa∼q(x)[f(x, a)− f∗(x, a)]2

]
≥ ∆



IEEE TRANSACTIONS ON INFORMATION THEORY 5

behavior of Alternating Minimization (AM) algorithms ([55],

[9]).

Having said that, we believe a weaker separability as-

sumption that requires f ∈ Fd∗−1 and f∗ to be separated

near the optimal action πf∗ only (local separability) should

be sufficient—which is often the case for (offline) statistical

problems. However, with finite (K) number of actions, it is

not immediately clear how to weaken this, and model selection

without (or with weak) separability is kept as an interesting

future work. We also emphasize that although we require

the gap assumption for theoretical analysis, our algorithm

(described next) does not require any knowledge of ∆, and

adapts to the gap of the problem.

A. Warm Up: A simple Explore-Then-Commit (ETC) algo-

rithm for model selection

In this section, we provide a simple model selection algo-

rithm based on Explore-Then-Commit (ETC) novel model se-

lection algorithm that use successive refinements over epochs.

We use a simple Explore-Then-Commit (ETC) algorithm for

selecting the correct function class, and then commit to it

during the exploitation phase. After a round of exploration, we

do a (one-time) threshold based testing to estimate the function

class, and after that, exploit the estimated function class for

the rest of the iterations. Here, we consider any (generic)

contextual bandit algorithmACB along with the function class

F containing the true regressor f∗. The details are provided

in Algorithm 1.

As an example of ACB , we use a provable contextual bandit

algorithm, namely FALCON (stands for FAst Least-squares-

regression-oracle CONtextual bandits) of [1], the details are

provided in Algorithm 3.

Note that in this section, for simplicity, we continue

to consider consider the setup where the function classes

F1, . . . ,FM are finite. However, in Section V, we remove

this, and work in infinite function classes.

We show that this simple strategy finds the optimal function

class Fd∗ with high probability. We now explain the explo-

ration and exploitation phases of this algorithm.

For the first 2
√
T time epochs, we do the exploration (i.e.,

sample randomly). Precisely, the context-reward pair (xt, rt)
is being sampled by nature in an i.i.d fashion, and the action

the agent takes is chosen uniformly at random from the action

set A. In particular, the action is chosen independent of the

context xt. Hence, this is a pure exploration strategy.

Based on the samples of the first
√
T rounds, we estimate

the regression function {f̂j}Mj=1 for all the (hypothesis) func-

tion classes F1, . . . ,FM via offline regression oracle (see [1]

for details) and obtain f̂j = argminf∈Fj
(
∑√

T
t=1 f(xt, at) −

rt(at))
2 for all j ∈ [M ].

To remove dependence issues, we use the remaining
√
T

samples obtained form the sampling phase. Here we actually

compute the following test statistic for all hypothesis classes,

namely

Sj =
1√
T

√
T∑

t=1

(f̂j(xt, at)− rt(at))
2

Algorithm 1 ETC for model selection for contextual bandits

1: Input: Function classes F1 ⊂ F2 ⊂ . . . ⊂ FM , time

horizon T , confidence parameter δ
2: Explore:

3: for t = 1, 2, . . . , ⌈
√
T ⌉ do

4: Observe context reward pair (xt, rt)
5: Select action at uniformly at random from A, indepen-

dent of xt

6: Observe reward rt(at)
7: end for

8: Compute regression estimator f̂j =

argminf∈Fj

1√
T

∑⌈
√
T⌉

t=1 [f(xt, at) − rt(at)]
2 (via offline

regression oracle) for all j ∈ [M ]
9: Model Selection test:

10: Obtain another set of ⌈
√
T ⌉ fresh samples of (xt, rt, at)

via pure exploration (similar to line 4-6 )

11: Construct the test statistic Sj =
1

⌈
√
T⌉
∑⌈

√
T⌉

t=1 (f̂j(xt, at)−
rt(at))

2 for all j ∈ [M ]
12: Thresholding: Find minimum index ℓ ∈ [M ] such that

Sj ≤ SM +
√
log T
T 1/4 and obtain f̂ℓ ∈ Fℓ

13: Commit:

14: for t = 2⌈
√
T ⌉+ 1, . . . , T do

15: Observe context xt ∈ X and reward function rt
16: Run ACB(Fℓ)
17: Obtain at and observe reward rt(at).
18: end for

for all j ∈ [M ]. We then perform a thresholding on {Sj}Mj=1.

We pick the smallest index j such that Sj ≤ SM +
√
log T
T 1/4 .

We then commit to this function class for the rest T − 2
√
T

time steps. Hence, in Algorithm 1, we perform one step

thresholding and commit to it. We show that simple scheme

obtains the correct model with high probability.

B. Regret Guarantee of ETC

Lemma 1 (Model Selection for ETC): Suppose the time

horizon satisfies

T & (logT ) max
(
log
(√

T |FM |
)
,∆−4, log(1/δ)

)
.

Then with probability at least 1−4Mδ, line 11 in Algorithm 1

identifies the correct model class Fd∗ .

We now analyze the regret performance of Algorithm 1.

The regret R(T ) is comprised of 2 stages; (a) exploration and

(b) commit (exploitation). We have the following result.

Theorem 1: Suppose Assumptions 1 and 2 hold. Then with

probability at least 1 − 4Mδ, running Algorithm 1 for T
iterations yield

R(T ) ≤ C
√
T +RACB(Fd∗)(T − 2

√
T ),

where RACB(Fd∗)(T − 2
√
T ) is the regret of the ACB with

function class Fd∗ . In particular, if ACB = FALCON, with

probability at least 1− 4Mδ − δ, we obtain

R(T ) ≤ C
√
T +O

(√
KT log(|Fd∗ |T/δ)

)
.
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Remark 1 (Cost of Model Selection): As seen in Theorem 1,

the cost of model selection is O(
√
T ). In the next section, we

propose a successive refinement based algorithm to cut down

this cost to O(logT ).
Remark 2 (Matches Oracle): Let us consider the special

case when ACB= FALCON. In the regret expression, the

first term scales with O(
√
T ). The second expression in the

regret is Õ(
√
KT log(|Fd∗ |T/δ), with high probability). So,

we observe that (order-wise) the cost of model selection is no-

worse than the regret of FALCON even with the knowledge

of the smallest function class containing f∗, i.e, Fd∗ .

C. Beyond ETC: Algorithm—Adaptive Contextual Bandits

(ACB)

In the previous section, we saw a simple ETC type algorithm

for model selection. In this section, we propose and analyze

a novel model selection algorithm that use successive refine-

ments over epochs to cut down the cost of model selection.

Similar to the previous section, we consider any contextual

bandit algorithmACB along with the function class F contain-

ing the true regressor f∗. We take ACB(F) as a baseline, and

add a model selection phase at the beginning of each epoch. In

other words, over multiple epochs, we successively refine our

estimates of the proper model class where the true regressor

function f∗ lies. The details are provided in Algorithm 2. Note

that ACB does not require any knowledge of the separation ∆.

As an example of ACB , we use a provable contextual bandit

algorithm, namely FALCON (stands for FAst Least-squares-

regression-oracle CONtextual bandits) of [1], the details are

provided in Algorithm 3.

Note that in this section, for simplicity, we continue

to consider consider the setup where the function classes

F1, . . . ,FM are finite. However, in Section V, we remove

this, and work in infinite function classes.

a) The Base Algorithm:: We work with a generic con-

textual bandit algorithm, ACB , which, upon observing context

xt, outputs an action at for the agent along with the reward

rt(at). As a special case, we take the example of a contex-

tual bandit algorithm, FALCON (see Algorithm 3), which is

recently proposed and analyzed in [1]. In particular, FALCON

gives provable guarantees for contextual bandits beyond linear

structure. FALCON is an epoch based algorithm, and depends

only on an offline regression oracle, which outputs an estimate

f̂ of the regression function f∗ at the beginning of each epoch.

FALCON then uses a randomization scheme, that depends on

the inverse gap with respect to the estimate of the best action.

Suppose that the true regressor f∗ ∈ F , and the realizibility

condition (Assumption 1) holds. With a proper choice of

learning rate, with probability 1− δ, FALCON yields a regret

of R(T ) ≤ O(
√

KT log(|F|T/δ)). Although the above result

makes sense only for the finite F , an extension to the infinite

F is possible and was addressed in the same paper (see [1]).

b) Our Approach: We use successive refinement based

model selection strategy along with the base algorithm ACB .

The details of our algorithm, namely Adaptive Contextual

Bandits (ACB) are given in Algorithm 2. We break the time

horizon into several epochs with doubling epoch length. Let

Algorithm 2 Adaptive Cotextual Bandits (ACB)

1: Input: epochs 0 = τ0 < τ1 < τ2 < . . ., confidence

parameter δ, Function classes F1 ⊂ F2 ⊂ . . . ⊂ FM

2: for epoch m = 1, 2, . . . , do

3: δm = δ/2m

4: for function classes j = 1, 2, . . . ,M do

5: Compute f̂m
j = argminf∈Fj

∑τm−1/2
t=τm−2+1(f(xt, at)−

rt(at))
2 via offline regression oracle

6: Construct Sm
j = 1

2m−2

∑τm−1

t=τm−1/2+1(f̂
m
j (xt, at) −

rt(at))
2

7: end for

8: Model Selection: Find the minimum index j ∈ [M ]

such that Sm
j ≤ Sm

M +
√
m

2m/2 . Let this index be ℓ and

the class be Fm
ℓ

9: for round t = τm−1 + 1, . . . , τm do

10: Observe context xt ∈ X and reward function rt
11: Run ACB(Fm

ℓ )
12: Obtain at and observe reward rt(at).
13: end for

14: end for

Algorithm 3 Special Case: ACB(Fm
ℓ ) = FALCON(Fm

ℓ ) at

time t
1: Input: epochs 0 = τ0 < τ1 < τ2 < . . ., epoch index m,

Hypothesis class: Fm
ℓ , confidence parameter δm

2: Set learning rate ρm =
1
30

√
K(τm−1 − τm−2)/ log(|Fm

ℓ |(τm−1 − τm−2)m/δm)
3: Observe context xt ∈ X
4: Compute f̂m

ℓ (a) for all action a ∈ A, set ât =
argmaxa∈Af̂

m
ℓ (a)

5: Define pt(a) = 1

K+ρm(f̂m
ℓ (xt,ât)−f̂m

ℓ (xt,a)
∀a 6= ât,

pt(ât) = 1−∑a 6=ât
pt(a).

6: Sample at ∼ pt(.) and observe reward rt(at).

τ0, τ1, . . . be epoch instances, with τ0 = 0, and τm = 2m.

Before the beginning of the m-th epoch, using all the data

of the m− 1-th epoch, we add a model selection module, as

shown in Algorithm 2 (lines 4-8).

Note that, in ACB, we feed the samples of the m − 1-th

epoch to the offline regression oracle. Moreover, we split the

samples in 2 equal halves. We use the first half to compute

the regression estimate

f̂m
j = argminf∈Fj

τm−1/2∑

t=τm−2+1

(f(xt, at)− rt(at))
2

via offline regression oracle. ACB then use the rest of the

samples to construct the test statistics given by,

Sm
j =

1

2m−2

τm−1∑

t=τm−1/2+1

(f̂m
j (xt, at)− rt(at))

2

for all j ∈ [M ]. We do not use the same set of samples

to remove any dependence issues with f̂m
j and the samples

{xt, at, rt(at)}τm−1

t=τm−1/2+1.

ACB then compares the test statistics {Sm
j }Mm=1 in Line 8

of Algorithm 2 to pick the model class. Intuitively, we expect

Sm
j to be small for all hypothesis classes that contain f∗

d∗ .
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Otherwise, thanks to the separation condition in Assumption

2, we expect Sm
j to be large. Realizability, i.e., Assumption

1 ensures that FM , the largest hypothesis class by definition

contains the true model f∗. Thus Sm
M serves as an estimate of

how small the excess risk of any realizable class must be. We

set the threshold to be a small addition to Sm
M . The additional

term of
√

m
2m in Line 8 of Algorithm 2 is chosen so that it

is not too small, but nevertheless goes to 0, as m → ∞. In

particular, we choose the threshold in ACB such that it is large

enough to ensure all realizable classes have excess risk smaller

than this threshold, but also not so large that it exceeds the

excess risk of the non-realizable classes.

Let Fm
ℓ be function class selected by this procedure in

epoch m. ACB now uses the base algorithm, ACB(Fm
ℓ ) to

obtain an action at and corresponding reward rt(at). For

instance, in the case of FALCON (as seen in Algorithm 3),

the learner uses inverse gap randomization with properly

chosen learning rate (see [1], [56], [57]) to select the action

at. In particular, with f̂m
ℓ as the regressor function, let

ât = argmaxa∈Af̂
m
ℓ (a) be the greedy action. The inverse

gap randomization pt(.) is defined in the following way:

pt(a) =
1

K + ρm(f̂m
ℓ (xt, ât)− f̂m

ℓ (xt, a)
∀a 6= ât,

pt(ât) = 1−
∑

a 6=ât

pt(a),

where K is the number of arms (actions) and ρm is the

learning rate. Finally, we sample action at ∼ pt(.) and

henceforth observe reward rt(at).

D. Analysis of ACB

We now analyze the performance of the model selection

procedure of Algorithm 2. We have the doubling epochs, i.e.,

τm = 2m. Without loss of generality, we simply assume

τ1 = 2. Also, assume that we are at the beginning of epoch

m, and hence we have the samples from epoch m − 1. So,

we have total of 2m−1 samples, out of which, we use 2m−2

to construct the regression functions and the rest 2m−2 to

obtain the testing function Sm
j . Furthermore, we want the

model selection procedure to succeed with probability at least

1− δ/2m, since the we want a guarantee that holds for all m,

and a simple application of the union bound yields that. We

first show that ACB identifies the correct function class with

high probability after a few epochs. We have the following

Lemma.

Lemma 2 (Model Selection of ACB): Suppose Assumptions 1

and 2 holds and we run Algorithm 2. Then, in all phases m
such that

2m & max{ logT
∆2

, log(|FM |), log(1/δ)}

Algorithm 2 identifies the correct model class Fd∗ in Line 8,

with probability exceeding 1− 2Mδ.

Proof sketch. In order select the correct function class, we

first obtain upper bounds on the test statistics S
(m)
j for model

classes that includes the true regressor f∗
d∗ . We accomplish this

by first carefully bounding the expectation of S
(m)
j and then

using concentration. We then obtain a lower bound on S
(m)
j for

model classes not containing f∗
d∗ via leveraging Assumption 2

(separability) along with Assumption 1. Combining the above

two bounds yields the desired result.

a) Regret Guarantee: With the above lemma, we obtain

the following regret bound for Algorithm 2.

Theorem 2: Suppose the conditions of Lemma 2 hold. Then

with probability at least 1− 2Mδ, running Algorithm 2 for T
iterations yield

R(T ) ≤ Cmax{ logT
∆2

, log(|FM |), log(1/δ)}
+RACB(Fd∗)(T )

where RACB(Fd∗)(T ) is the regret of ACB with hypothesis

class Fd∗ . In particular, if ACB = FALCON, with probability

at least 1− 2Mδ − δ, we obtain

R(T ) ≤ C max{ logT
∆2

, log(|FM |), log(1/δ)}

+O
(√

KT log(|Fd∗ |T/δ)
)
.

Remark 3 (Matches Oracle):

The first term of the regret scales weakly with T (as

O( logT /∆2)). Hence, provided ∆2 ≥ log T√
KT log(|Fd∗ |T/δ)

,

the regret scaling (with respect to T ) is dominated

by RACB(Fd∗)(T ) (in case of FALCON, this term is

Õ(
√

KT log(|Fd∗ |T/δ), with high probability). However note

that this is the regret of an oracle knowing the true function

class Fd∗ .

Remark 4 (Model selection Cost): The first term can be

interpreted as the cost of model selection and it depends

on the gap ∆. Hence, the model selection procedure only

adds a O( log T
∆2 ) term (this term is minor in the regime

∆2 ≥ log T√
KT log(|Fd∗ |T/δ)

) term compared to the
√
T scaling).

Remark 5 (Adaptive): Algorithm 3 does not require knowl-

edge of ∆. Nevertheless, the regret guarantee adapts to the

problem hardness, i.e., if ∆ is small, the regret is larger and

vice-versa.

Remark 6 (Improvement from O(logT ) to O(log logT ) in

the model selection cost): We emphasize that the O(log T )
factor in the cost of model selection term can be improved, if

we have the knowledge of T apriori. In that setting, instead

of substituting δm = δ/2m, we substitute δm = δ/ logT for

all m. Since the doubling epoch ensures a total of O(log T )
epochs, this choice of δm yields

R(T ) ≤ Cmax{ 1

∆2
, log(|FM |), log(logT/δ)}

+RACB(Fd∗)(T ),

with probability at least 1− 2Mδ.

Remark 7 (Stronger Oracle in [13]): The cost of model

selection in Theorem 2, depends on the complexity of the

largest model class FM . Under a stronger assumption on the

regression oracle (for example Assumption 2 of [13]), the cost

of model selection can only depend on Fd∗ as opposed to

FM . Based on samples obtained from pure exploration for a

realizable function class, we use [7] to bound the excess risk

(i.e., E(f̂ − f∗
d∗)2) as a function of log(|Fi|). In particular,

since FM (the largest class) is always realizable, we obtain
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an upper bound dependent on log(FM ). On the other hand,

Assumption 2 of [13] leads to an upper bound dependent on

log(|Fd∗ |) only (since they take a minimum over all realizable

classes).

V. GENERIC CONTEXTUAL BANDITS WITH INFINITE

FUNCTION CLASSES

The results in Section IV hold for finite function classes,

since the regret bound depends on the cardinality of the

function class. However, it can be extended to the infinite

function classes (see [1] for details). Exploiting the notion

of the complexity of infinite function classes, this reduction is

done.

Like before, we consider a nested sequence of M function

classes F1 ⊂ . . . ⊂ FM . The reward is sampled from

an unknown function f∗
d∗ lying in the (smallest) function

class indexed by d∗ ∈ [M ], which is unknown. Given the

function classes, our job is to find the function class Fd∗ , and

subsequently exploit the class to obtain sub-linear regret. Let

us first rewrite the separability assumption.

We assume that the function classes F1 ⊂ . . . ⊂ FM are

compact. This, in conjunction with the extreme value theorem,

it is ensured that the following minimizers exist: for j < d∗,

we define

f̄j = arginff∈Fj
Ex,a[f(x, a)− f∗

d∗(x, a)]2

for all pairs (x, a). For j ≥ d∗, we know that this minimizer

is indeed f∗
d∗ . This comes directly from the realizibility as-

sumption. Note that we require the existence of the minimizer

(regression function) in order to use it for selecting actions in

the contextual bandit framework (see [1])

Having defined the minimizers, we rewrite the separability

assumption as following:

Assumption 3: For any f̄j , where j < d∗, we have

Ex

[
inf
a∈A

(f̄j(x, a)− f∗
d∗(x, a))2

]
≥ ∆.

Similar to [1], here, we are not worried about the explicit

form of the regression functions f̄j . Rather, we assume the

following performance guarantee of the offline regressor. For

j ≥ d∗ (meaning, the class containing the true regressor f∗
d∗),

we have the following assumption.

Assumption 4: Given n i.i.d data samples

(x1, a1, r1(a1)), (x2, a2, r2(a2)), . . . , (xn, an, rn(an)), the

offline regression oracle returns a function f̂j , such that for

δ > 0, with probability at least 1− δ,

Ex,a[f̂j(x, a)− f∗
d∗(x, a)]2 ≤ ξFj ,δ(n)

This assumption is taken from [1, Assumption 2]. As discussed

in the above-mentioned paper, the quantity ξ(.,.)(n) is a

decreasing function of n, e.g., ξ(.,.)(n) = Õ(1/n). As an

instance, consider the class of all linear regressors in R
d. In

that case, ξ(.,.)(n) ∼ Õ(d/n). For function classes with finite

VC dimension (or related quantities like VC-sub graph or fat-

shattering dimension; pseudo dimension in general, denoted

by d̃), we have ξ(.,.)(n) ∼ Õ(d̃/n).
In this section, we consider:

1) The ETC algorithm (Algorithm 1) with ACB = FALCON

2) The adaptive contextual bandit (ACB) algorithm (Algo-

rithm 3) with ACB = FALCON

The model-selection algorithm remains the same. For Op-

tion I, we explore for the first 2
√
T rounds. The first

√
T

rounds are used to collect samples (xt, rt, at) via pure explo-

ration. Feeding this samples to the offline regression oracle,

and focusing on the individual function classes {Fj}Mj=1 sep-

arately, we obtain (f̂j , ξFj ,δ(
√
T )) for all j ∈ [M ]. Thereafter,

we perform another round of pure exploration, and obtain
√
T

fresh samples. Like in the finite case, we construct statistic Sj

for all j ∈ [M ].
For Option II, we collect all the samples from the previous

epoch of the FALCON algorithm, split the samples, to obtain

the regression estimate f̂m
j and similarly construct test statistic

Sm
j for all j ∈ [M ]. In this setting, for the m-th epoch, with

model chosen as Fℓ, we set the learning rate (similar to the

FALCON+ algorithm of [1]) as

ρm = (1/30)
√
K/ξFm

ℓ ,δ/2m2(τm−1 − τm−2).

Similar to Algorithms 1 and 3, we choose the correct model

based on a threshold on the test statistic Sm
j (for Option II,

it is Sj) and the threshold in phase m is γm := Sm
M

√
m
2m

( γ := SM +
√

log T√
T

for Option II). We show that for all

sufficiently large phase numbers, for all j ≥ d∗, Sm
j ≤ γm,

and for all j < d∗, Sm
j > γm with high probability. Once

this is shown, the model selection procedure follows exactly

as Algorithm 1, i.e., we find the smallest index ℓ ∈ [M ], for

which Sℓ ≤ γm. With high probability, we show that ℓ = d∗.
a) Regret Guarantee: We first show the guarantees for

Option I, and Option II.

Theorem 3: (ETC with ACB = FALCON) Suppose Assump-

tions 1, 3 and 4 hold. Then, provided,

T & (logT )max
(
T 1/4ξFM ,(1/T 1/4),∆

−4, log(1/δ)
)
,

with probability at least 1 − 4Mδ, line 11 in Algorithm 1

identifies the correct model class Fd∗ . Furthermore, running

Algorithm 1 for T iterations yields, with probability at least

1− 2Mδ − δ, the regret

R(T ) ≤ C
√
T +O

(√
KξFd∗ ,δ/2T (T ) T

)
.

Theorem 4: (ACB with ACB = FALCON) Suppose As-

sumptions 1, 3 and 4 hold. Then, with probability at least

1− 2Mδ − δ, running Algorithm 3 for T iterations yield

R(T ) ≤ C(logT )max{max
m

2m/2 ξFM ,1/2m/2(2m−2),

log(1/δ),∆−2}+O
(√

KξFd∗ ,δ/2T (T )T
)
.

Remark 8 (Matching Oracle regret): In both the settings,

we match the regret of an oracle knowing the correct function

class (see [1]). We pay a small additive price for model

selection.

Remark 9: The proof of these theorems parallels exactly

similar to the finite function class setting. The only difference

is that instead of upper-bounding the prediction error using

technical tools from [7], we use the the definition of ξ(.) to

accomplish this.
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VI. MODEL SELECTION IN STOCHASTIC LINEAR BANDITS

In the previous sections, we consider the problem of model

selection for general contextual bandits. Moreover, we as-

sumed that the function classes are separable, and leveraging

that we have several provable model selection algorithms. In

this section, we consider a special case of model selection

for stochastic linear bandits. We observe that with this linear

structure, assumption like separability across function classes

is not required.

In the linear bandit settings, we consider 2 different setup—

(a) continuum (infinite) arm setting and (b) finite arm setting.

We first start with the continuum arm setup.

A. Model Selection for Continuum (infinite) Arm Stochastic

Linear bandits

1) Setup: We consider the standard stochastic linear bandit

model in d dimensions (see [22]), with the dimension as a

measure of complexity. The setup comprises of a continuum

collection of arms denoted by the set A := {x ∈ R
d : ‖x‖ ≤

1}6 Thus, the mean reward from any arm x ∈ A is 〈x, θ∗〉,
where ‖θ∗‖ ≤ 1. We assume that θ∗ is d∗ ≤ d sparse, where

d∗ is apriori unknown to the algorithm. For each time t ∈
[T ], if an algorithm chooses an arm xt ∈ A, the observed

reward is denoted by yt := 〈xt, θ
∗〉+ ηt, where {ηt}t≥1 is an

i.i.d. sequence of 0 mean sub-gaussian random variables with

known parameter σ2.

We consider a sequence of d nested hypothesis classes,

where each hypothesis class i ≤ d, models θ∗ as a i sparse

vector. The goal of the forecaster is to minimize the regret,

namely

R(T ) =

T∑

t=1

[〈x∗
t − xt, θ

∗〉] ,

where at any time t, xt is the action recommended by an

algorithm and x∗
t = argmaxx∈A〈x, θ∗〉. The regret R(T )

measures the loss in reward of the forecaster with that of an

oracle that knows θ∗ and thus can compute x∗
t at each time.

Note that, we assume that the true complexity (dimension)

d∗ ≤ d is initially unknown, and we seek algorithms that

adapts to this unknown true dimension, rather than assume

that the problem is d dimensional. This is in contrast to both

the standard linear bandit setup [3], [22], where there is no

notion of complexity, as well as the line of work on sparse

linear bandits [15], where the the true sparsity (dimension)

is known, but only the set of which of the d∗ out of the d
coordinates is non-zero is unknown.

2) Algorithm: Adaptive Linear Bandits (Dimension)

[ALB-Dim] : We present our adaptive scheme in Algorithm 4.

The algorithm is parametrized by T0 ∈ N, which is given

in Equation (1) in the sequel and slack δ ∈ (0, 1).
ALB-Dim proceeds in phases numbered 0, 1, · · · which

are non-decreasing with time. At the beginning of each

phase, ALB-Dim makes an estimate of the set of non-zero

6Our algorithm can be applied to any compact set A ⊂ Rd, including the
finite set as shown in Appendix X.

Algorithm 4 Adaptive Linear Bandit (Dimension)

1: Input: Initial Phase length T0 and slack δ > 0.

2: θ̂0 = 1, T−1 = 0
3: for Each epoch i ∈ {0, 1, 2, · · · } do

4: Ti = 36iT0, εi ← 1
2i , δi ← δ

2i

5: Di := {i : |θ̂i| ≥ εi
2 }

6: for Times t ∈ {Ti−1 + 1, · · · , Ti} do

7: Play OFUL(1, δi) only restricted to coordinates in

Di. Here δi is the probability slack parameter and 1
represents ‖θ∗‖ ≤ 1.

8: end for

9: for Times t ∈ {Ti + 1, · · · , Ti + 6i
√
T0} do

10: Play an arm from the action set A chosen uniformly

and independently at random.

11: end for

12: αi ∈Si×d with each row being the arm played during

all random explorations in the past.

13: yi ∈Si with i-th entry being the observed reward at the

i-th random exploration in the past

14: θ̂i+1 ← (αT
i αi)

−1
αiyi, is a d dimensional vector

15: end for

coordinates of θ∗, which is kept fixed throughout the phase.

Concretely, each phase i is divided into two blocks:

1) a regret minimization block lasting 36iT0 time slots7,

2) followed by a random exploration phase lasting 6i⌈√T0⌉
time slots.

Thus, each phase i lasts for a total of 36iT0 + 6i⌈√T0⌉ time

slots. At the beginning of each phase i ≥ 0, Di ⊆ [d]
denotes the set of ‘active coordinates’, namely the estimate

of the non-zero coordinates of θ∗. By notation, D0 = [d]
and at the start of phase 0, the algorithm assumes that θ∗

is d sparse. Subsequently, in the regret minimization block

of phase i, a fresh instance of OFUL [22] is spawned, with

the dimensions restricted only to the set Di and probability

parameter δi :=
δ
2i . In the random exploration phase, at each

time, one of the possible arms from the set A is played

chosen uniformly and independently at random. At the end

of each phase i ≥ 0, ALB-Dim forms an estimate θ̂i+1 of

θ∗, by solving a least squares problem using all the random

exploration samples collected till the end of phase i. The

active coordinate set Di+1, is then the coordinates of θ̂i+1 with

magnitude exceeding 2−(i+1). The pseudo-code is provided in

Algorithm 4, where, ∀i ≥ 0, Si in lines 15 and 16 is the total

number of random-exploration samples in all phases upto and

including i.

3) Regret Guarantee: We first specify, how to set the input

parameter T0, as function of δ. For any N ≥ d, denote by AN

to be the N × d random matrix with each row being a vector

sampled uniformly and independently from the unit sphere

in d dimensions. Denote by MN := 1
NE[AT

NAN ], and by

λ
(N)
max, λ

(N)
min, to be the largest and smallest eigenvalues of MN .

Observe that as MN is positive semi-definite (0 ≤ λ
(N)
min ≤

7We have not optimized over the constants like 36 and 6. Please refer to
Remark 11 on this.
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λ
(N)
max) and almost-surely full rank, i.e., P[λ

(N)
min > 0] = 1. The

constant T0 is the smallest integer such that

√
T0 ≥max

(
32σ2

(λ
(⌈
√
T0⌉)

min )2
ln(2d/δ),

4

3

(6λ
(⌈
√
T0⌉)

max + λ
(⌈
√
T0⌉)

min )(d+ λ
(⌈
√
T0⌉)

max )

(λ
(⌈
√
T0⌉)

min )2
ln(2d/δ)

)

(1)

Remark 10: T0 in Equation (1) is chosen such that, at the

end of phase 0, P[||θ̂0 − θ∗||∞ ≥ 1/2] ≤ δ [58]. A formal

statement of the Remark is provided in Lemma 3 in Appendix

VIII.

Theorem 5: Suppose Algorithm 4 is run with input param-

eters δ ∈ (0, 1), and T0 as given in Equation (1), then with

probability at-least 1−δ, the regret after a total of T arm-pulls

satisfies

RT ≤ C
T0

γ5.18
T0 + C1

√
T

[
1 +

√
d∗ ln(1 +

T

d∗
)

× (1 + σ

√
ln(

T

T0δ
) + d∗ ln(1 +

T

d∗
))

]
.

The parameter γ > 0 is the minimum magnitude of the non-

zero coordinate of θ∗, i.e., γ = min{|θ∗i | : θ∗i 6= 0} and d∗ the

sparsity of θ∗, i.e., d∗ = |{i : θ∗i 6= 0}|.
In order to parse this result, we give the following corollary.

Corollary 1: Suppose Algorithm 4 is run with input param-

eters δ ∈ (0, 1), and T0 = Õ
(
d2 ln2

(
1
δ

))
given in Equation

(1), then with probability at-least 1−δ, the regret after T times

satisfies

RT ≤ O(
d2

γ5.18
ln2(d/δ)) + Õ(d∗

√
T ).

Remark 11: The constants in the above Theorem are not

optimized. The epoch length and the threshold parameter εi
can be chosen more carefully. For example, if we set the epoch

length as 4iT0 + 2i
√
T0 and the threshold εi as (0.9)i, we

obtain a worse dependence on γ. Furthermore, the exponent

of γ can be made arbitrarily close to 4, by setting εi = C−i in

Line 4 of Algorithm 4, for some appropriately large constant

C > 1, and increasing Ti = (C′)iT0, for appropriately large

C′ (C′ ≈ C4).
Remark 12: In this special case of linear bandits, the

separability condition boils down to γ > 0, which comes with

the problem setup automatically, since the complexity of the

problem is the number of non-zero entries of the underlying

true parameter θ∗.

Discussion - The regret of an oracle algorithm that knows the

true complexity d∗ scales as Õ(d∗
√
T ) [14], [15], matching

ALB-Dim’s regret, upto an additive constant independent of

time. ALB-Dim is the first algorithm to achieve such model

selection guarantees. On the other hand, standard linear bandit

algorithms such as OFUL achieve a regret scaling Õ(d
√
T ),

which is much larger compared to that of ALB-Dim, espe-

cially when d∗ << d, and γ is a constant. Numerical simu-

lations further confirms this deduction, thereby indicating that

our improvements are fundamental and not from mathematical

bounds. Corollary 1 also indicates that ALB-Dim has higher

regret if γ is lower. A small value of γ makes it harder

to distinguish a non-zero coordinate from a zero coordinate,

which is reflected in the regret scaling. Nevertheless, this only

affects the second order term as a constant, and the dominant

scaling term only depends on the true complexity d∗, and not

on the underlying dimension d. However, the regret guarantee

is not uniform over all θ∗ as it depends on γ. Obtaining regret

rates matching the oracles and that hold uniformly over all θ∗

is an interesting avenue of future work.

B. Dimension as a Measure of Complexity - Finite Armed

Setting

1) Setup: In this section, we consider the model selection

problem for the setting with finitely many arms in the frame-

work studied in [10]. At each time t ∈ [T ], the forecaster

is shown a context Xt ∈ X , where X is some arbitrary

‘feature space’. The set of contexts (Xt)
T
t=1 are i.i.d. with

Xt ∼ D, a probability distribution over X that is known to

the forecaster. Subsequently, the forecaster chooses an action

At ∈ A, where the set A := {1, · · · ,K} are the K possible

actions chosen by the forecaster. The forecaster then receives

a reward Yt := 〈θ∗, φM (Xt, At)〉 + ηt. Here (ηt)
T
t=1 is an

i.i.d. sequence of 0 mean sub-gaussian random variables with

sub-gaussian parameter σ2 that is known to the forecaster. The

function8 φM : X × A → R
d is a known feature map, and

θ∗ ∈ R
d is an unknown vector. The goal of the forecaster is to

minimize its regret, namely R(T ) :=
∑T

t=1 E [〈A∗
t −At, θ

∗〉],
where at any time t, conditional on the context Xt, A∗

t ∈
argmaxa∈A〈θ∗, φM (Xt, a)〉. Thus, A∗

t is a random variable

as Xt is random.

To describe the model selection, we consider a sequence

of M dimensions 1 ≤ d1 < d2, · · · < dM := d and

an associated set of feature maps (φm)Mm=1, where for any

m ∈ [M ], φm(·, ·) : X × A → R
dm , is a feature map

embedding into dm dimensions. Moreover, these feature maps

are nested, namely, for all m ∈ [M − 1], for all x ∈ X
and a ∈ A, the first dm coordinates of φm+1(x, a) equals

φm(x, a). The forecaster is assumed to have knowledge of

these feature maps. The unknown vector θ∗ is such that its

first dm∗ coordinates are non-zero, while the rest are 0. The

forecaster does not know the true dimension dm∗ . If this were

known, than standard contextual bandit algorithms such as

LinUCB [3] can guarantee a regret scaling as Õ(
√
dm∗T ). In

this section, we provide an algorithm in which, even when the

forecaster is unaware of dm∗ , the regret scales as Õ(
√
dm∗T ).

However, this result is non uniform over all θ∗ as, we will

show, depends on the minimum non-zero coordinate value in

θ∗.

Model Assumptions We will require some assumptions iden-

tical to the ones stated in [10]. Let ‖θ∗‖2 ≤ 1, which is known

to the forecaster. The distribution D is assumed to be known to

the forecaster. Associated with the distribution D is a matrix

ΣM := 1
K

∑
a∈A E

[
φM (x, a)φM (x, a)T

]
(where x ∼ D),

where we assume its minimum eigen value λmin(ΣM ) > 0

8Superscript M will become clear shortly
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is strictly positive. Further, we assume that, for all a ∈ A,

the random variable φM (x, a) (where x ∼ D is random) is a

sub-gaussian random variable with (known) parameter τ2.

2) ALB-Dim Algorithm: The algorithm here is identical

to that of Algorithm 4, except that in place of OFUL, we

use SupLinRel of [3] as the black-box. The details of the

Algorithm are provided in Appendix X.

3) Regret Guarantee: For brevity, we only state the Corol-

lary of our main Theorem (Theorem 6) which is stated in

Appendix X.

Corollary 2: Suppose Algorithm 5 is run with input param-

eters δ ∈ (0, 1), and T0 = Õ
(
d2 ln2

(
1
δ

))
given in Equation

(17) , then with probability at-least 1 − δ, the regret after T
times satisfies

RT ≤ O

(
d2

γ5.18
ln2(d/δ)τ2 ln

(
TK

δ

))
+ Õ(

√
Td∗m),

where γ = min{|θ∗i | : θ∗i 6= 0} and θ∗ is d∗ sparse.

Discussion - Our regret scaling matches that of an oracle that

knows the true problem complexity and thus obtains a regret of

Õ(
√
dm∗T ). This, thus improves on the rate compared to that

obtained in [10], whose regret scaling is sub-optimal compared

to the oracle. On the other hand however, our regret bound

depends on γ and is thus not uniform over all θ∗, unlike

[10] that is uniform over θ∗. Thus, in general, our results

are not directly comparable to that of [10]. It is an interesting

future work to close the gap and in particular, obtain the regret

matching that of an oracle to hold uniformly over all θ∗.

VII. CONCLUSION

In this paper, we address the problem of model selection

for generic contextual bandits. We propose and analyze a

meta algorithm, that takes any provable base algorithm as

blackbox and performs model selection on top. Moreover, we

also analyze a much simpler algorithm based on explore and

commit for model selection. Our model selection schemes rely

on realizibility and separability assumptions, and remove (or

weaken) them is an immediate future work. We would also

like to work on model selection problems for Reinforcement

Learning problems. We keep these as our future endeavors.
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APPENDIX

VIII. MODEL SELECTION FOR CONTEXTUAL BANDITS

A. Proof of Lemma 1

Since, we have samples from pure exploration, let us first

show that Sj concentrates around its expectation. We show it

via a simple application of the Hoeffdings inequality.

Fix a particular j ∈ [M ]. Note that f̂j is computed based

on the first set of ⌈
√
T ⌉ samples. Also, in the testing phase,

we again sample ⌈
√
T ⌉ samples, and so f̂ is independent of

the second set of ⌈
√
T ⌉ samples, used in constructing Sj .

Note that since we have rt(.) ∈ [0, 1], we may restrict the

offline regression oracle to search over functions having range

[0, 1]. This implies that, we have f̂m
j (.) ∈ [0, 1]. Note that

this restricted search assumption is justified since our goal

is obtain an estimate of the reward function via regression

function, and this assumption also features in [1]. So the

random variable (f̂j(xt, at) − rt(at))
2 is upper-bounded by

4, and hence sub-Gaussian with a constant parameter. Also,

note that since we are choosing an action independent of the

context, the random variables {(f̂j(xt, at) − rt(at))
2}⌈

√
T⌉

t=1

are independent. Hence using Hoeffdings inequality for sub-

Gaussian random variables, we have

P (|Sj − ESj | ≥ ℓ) ≤ 2 exp(−nℓ2/32).

Re-writing the above, we obtain

|Sj − ESj | ≤ C

√
log(1/δ)√

T
(2)

with probability at least 1− 2δ with
√
T samples.

Note that, the conditional variance of rt(.) is finite, i.e.,

given xt = x ∈ X , E[rt(a) − f∗
d∗(x, a)]2 ≤ 1, for all a ∈ A.

Let us define9
E[rt(a) − f∗

d∗(x, a)]2 = σ2. To be concrete

σ depends on epoch m and hence σm makes more sense.

We omit the subscript for notational simplicity. With this new

notation, let us first look at the expression ESj .

Let us look at the expression ESj .

ESj = E


 1

⌈
√
T ⌉

⌈
√
T⌉∑

t=1

(f̂j(xt, at)− rt(at))
2


 .

a) Case I: Realizable Class: First consider the case that

j ≥ d∗, meaning that f∗
d∗ ∈ Fj . So, for this realizable setting,

we obtain the excess risk as (using [7])

Ex,r,a[f̂j(x, a) − r(a)]2 − inf
f∈Fj

Ex,r,a[f(x, a)− r(a)]2

= Ex,r,a[f̂j(x, a)− r(a)]2 − Ex,r,a[f
∗
d∗(x, a)− r(a)]2

= Ex,a[f̂j(x, a) − f∗
d∗(x, a)]2.

9We use the notation σ2 throughout the rest of the paper.
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So, we have, for the realizable function class,

ESj =
1

⌈
√
T ⌉

Ext,rt,at

⌈
√
T⌉∑

t=1

[f̂j(xt, at)− rt(at)]
2

=
1

⌈
√
T ⌉

⌈
√
T⌉∑

t=1

Ext,rt,at [f
∗
d∗(xt, at)− rt(at)]

2

+
1

⌈
√
T ⌉

⌈
√
T⌉∑

t=1

Ext,at [f̂(x, a)− f∗
d∗(x, a)]2

≤ σ2 + C1
log(
√
T |Fj |)√
T

where C1 is an absolute constant. The second term is obtained

by setting the high probability slack, as 2−m/2 into [7, Lemma

4.1]. So, we finally have from the preceeding display and

Equation (2) that

σ2 − C2

√
log(1/δ)√

T
≤ Sj ≤ σ2 + C2

log(
√
T |Fj |)√
T

+ C3

√
log(1/δ)√

T
(3)

with probability at least 1− 2δ.
b) Case II: Non-realizable class: We now consider the

case when j < d∗, meaning that f∗
d∗ does not lie in Fj . We

have

Ex,r,a[f(x, a)− r(a)]2 − Ex,r,a[r(a) − f∗
d∗(x, a)]2

= Ex,a,r[(f(x, a)− f∗
d∗(x, a))(f(x, a) + f∗

d∗(x, a)− 2r(a)]

= Ex,aEr|x[(f(x, a)− f∗
d∗(x, a))(f(x, a) + f∗

d∗(x, a)− 2r(a)]

= Ex,a[(f(x, a)− f∗
d∗(x, a))(f(x, a) + f∗

d∗(x, a)− 2Er|xr(a)]

= Ex,a[f(x, a)− f∗
d∗(x, a)]2,

where the third inequality follows from the fact that given

context x, the distribution of r in independent of a (see [7,

Lemma 4.1]). Hence,

Ex,r,a[f(x, a)− r(a)]2 ≥ Ex,r,a[r(a)− f∗
d∗(x, a)]2

+ Ex,a[f(x, a)− f∗
d∗(x, a)]2

≥ ∆+ σ2,

where the last inequality comes from the separability as-

sumption along with the definition of σ. Since the regressor

f̂j ∈ Fj , we have

Ex,r,a[f̂j(x, a)− r(a)]2 ≥ Ex,r,a[r(a) − f∗
d∗(x, a)]2

+ Ex,a[f(x, a)− f∗
d∗(x, a)]2

≥ ∆+ σ2,

and hence

ESj ≥ ∆+ σ2

So, in this setting, with probability 1− 2δ,

Sj ≥ ESj − C4

√
log(1/δ)√

T
(4)

≥ ∆+ σ2 − C4

√
log(1/δ)√

T
. (5)

where C is an absolute global constant. Thus, from Equations

(3) and (5) and an union bound over the M classes, we have

with probability at-least 1− 4Mδ,

Sj ≥ σ2 − C2
log(
√
T |Fj |)√
T

− C3

√
log(1/δ)√

T
, for all j ≥ d∗,

Sj ≤ σ2 + C2
log(
√
T |Fj |)√
T

+ C3

√
log(1/δ)√

T
, for all j ≥ d∗,

Sj ≥ ∆+ σ2 − C4

√
log(1/δ)√

T
, for all j < d∗.

(6)

c) Choice of Threshold: Notice from Line 11 of Al-

gorithm 1, that the threshold for model selection is γ :=

SM +
√

log(T )√
T

. Thus, if the event in Equations (6) holds,

then the model selection stage will succeed in identifying the

correct model class if the threshold γ satisfies

γ < ∆+ σ2 − C4

√
log(1/δ)√

T
,

γ > σ2 + C2
log(
√
T |Fj |)√
T

+ C3

√
log(1/δ)√

T

(7)

The first item ensures that no-non realizable class will be

selected as the true model, and the second item ensures that

the smallest realizable class will be selected as the true model.

Thus, if the time horizon T satisfies
√

log(T )√
T
≥ 2

(
C2

log(
√
T |Fj|)√
T

+ C3

√
log(1/δ)√

T

)
, (8)

√
log(T )√

T
+ C2

log(
√
T |Fj |)√
T

+ C3

√
log(1/δ)√

T
≤ ∆

−C4

√
log(1/δ)√

T
, (9)

then the threshold γ satisfies the conditions in Equations (7).

It is easy to verify that for

T & (log T )max
(
log
(√

T |FM |
)
,∆−4, log(1/δ)

)
,

the conditions in Equations (9) holds. Thus, Equations (6), (7)

and (9) yield that, if

T & (log T )max
(
log
(√

T |FM |
)
,∆−4, log(1/δ)

)
,

with probability at-least 1− 4Mδ, the model selection test in

Line 11 of Algorithm 1 correctly identifies the smallest model

class containing the true model.

B. Proof of Theorem 1

The regret R(T ) can be decomposed in 2 stages, namely

exploration and exploitation.

R(T ) = Rexplore +Rexploit



IEEE TRANSACTIONS ON INFORMATION THEORY 13

Since we spend 2⌈
√
T ⌉ time steps in exploration, and rt(.) ∈

[0, 1], the regret incurred in this stage

Rexplore ≤ C1

√
T .

Now, at the end of the explore stage, provided Assumptions 2

and 3, we know, with probability at least 1− 4Mδ, we obtain

the true function class Fd∗ . The threshold is set in such a way

that we obtain the above result. Now, we would just commit

to the function class and use the contextual bandit algorithm,

ACB . We have

R(T ) ≤ C1

√
T +RACB(Fd∗)(T − 2

√
T ),

which proves the theorem. In the special case, where ACB=

FALCON, the regret is [1]

R(T ) ≤ C1

√
T

+O
(√

K(T − 2⌊
√
T ⌋) log(|Fd∗ |(T − 2⌊

√
T ⌋)/δ

)

≤ C1

√
T +O

(√
KT log(|Fd∗ |T/δ

)
,

with probability exceeding 1−4Mδ−δ. Combining the above

expressions yield the result.

C. Proof of Lemma 2

Let us first show that Sm
j concentrates around its expecta-

tion. We show it via a simple application of the Hoeffdings

inequality.

Fix a particular m and j ∈ [M ]. Note that f̂m
j is computed

based on 2m−2 samples. Also, in the testing phase, we use

a fresh set of 2m−2 samples, and so f̂m
j is independent of

the second set of samples, used in constructing Sm
j . Note

that since we have rt(.) ∈ [0, 1], we may restrict the offline

regression oracle to search over functions having range [0, 1].
This implies that, we have f̂m

j (.) ∈ [0, 1]. Note that this

restricted search assumption is justified since our goal is obtain

an estimate of the reward function via regression function, and

this assumption also features in [1]. So the random variable

(f̂m
j (xt, at)− rt(at))

2 is upper-bounded by 4, and hence sub-

Gaussian with a constant parameter.

Note that we are using only the samples from the previous

epoch. Note that in ACB, the regression estimate actually

remains fixed over an entire epoch. Hence, conditioning on

the filtration consisting of (context, action, reward) triplet

upto the end of the m − 2-th epoch, the random variables

{(f̂j(xt, at)− rt(at))
2}τm−1

t=τm−1/2+1 (a total of 2m−2 samples)

are independent. Note that similar argument is given in [1,

Section 3.1] (the FALCON+ algorithm) to argue the indepen-

dence of the (context, action, reward) triplet, accumulated over

just the previous epoch.

Hence using Hoeffdings inequality for sub-Gaussian random

variables, we have

P (|Sj − ESj | ≥ ℓ) ≤ 2 exp(−nℓ2/32).
Note that, the conditional variance of rt(.) is finite, i.e.,

given xt = x ∈ X , E[rt(a) − f∗
d∗(x, a)]2 ≤ 1, for all a ∈ A.

Recall that E[rt(a) − f∗
d∗(x, a)]2 = σ2, and that σ depends

on epoch m. We omit the subscript for notational simplicity.

With this new notation, let us first look at the expression ESj .

a) Realizable classes: Fix m and consider j ∈ [M ] such

that j ≥ d∗. So, for this realizable setting, we obtain the excess

risk as:

Ex,r,a[f̂
m
j (x, a)− r(a)]2 − inf

f∈Fj

Ex,r,a[f(x, a)− r(a)]2

= Ex,r,a[f̂
m
j (x, a)− r(a)]2 − Ex,r,a[f

∗
d∗(x, a)− r(a)]2

= Ex,a[f̂
m
j (x, a)− f∗

d∗(x, a)]2.

So, we have, for the realizable function class,

ESm
j =

1

2m−2
Ext,rt,at

2m−2∑

t=1

[f̂m
j (xt, at)− rt(at)]

2

=
1

2m−2

2m−2∑

t=1

Ext,rt,at [f
∗
d∗(xt, at)− rt(at)]

2

+
1

2m−2

2m−2∑

t=1

Ext,at [f̂
m
j (x, a) − f∗

d∗(x, a)]2

≤ σ2 + C1 log(2
m/2|Fj |)/(2m−2),

Here, the first term comes from the second moment bound of

σ2, and the second term comes by setting the high probability

slack as 2−m/2 into [7, Lemma 4.1]10. So, by applying Hoeffd-

ing’s inequality, we finally have (using the bound ESm
j ≥ σ2):

σ2 − C3

√
log(1/δ)

2m/2
− C4

√
m

2m/2
≤ Sm

j ≤ σ2 + C1
log(|Fj |)

2m
+

C2
m

2m
+ C3

√
log(1/δ)

2m/2
+ C4

√
m

2m/2

with probability at least 1 − δ/2m. Since we have doubling

epoch, we have

N∑

m=1

2m ≤ T,

where N is the number of epochs and T is the time horizon.

From above, we obtain N = O(log2 T ). Using the bound,

m ≤ N , note that, provided

2m & max{logT, log(|FM |), log(1/δ)}, (10)

we have for some absolute global constant c0, for any j ≥ d∗,

σ2 − c0
2m/2

≤ Sm
j ≤ σ2 +

c0
2m/2

(11)

with probability at least 1− δ/2m.

b) Non-Realizable classes:: For the non realizable

classes, we have the following calculation. For any f ∈ Fj ,

where j < d∗, we have

Ex,r,a[f(x, a)− r(a)]2 − Ex,r,a[r(a) − f∗
d∗(x, a)]2

= Ex,a,r[(f(x, a)− f∗
d∗(x, a))(f(x, a) + f∗

d∗(x, a) − 2r(a)]

= Ex,aEr|x[(f(x, a)− f∗
d∗(x, a))(f(x, a) + f∗

d∗(x, a) − 2r(a)]

= Ex,a[(f(x, a) − f∗
d∗(x, a))(f(x, a) + f∗

d∗(x, a)− 2Er|xr(a)]

= Ex,a[f(x, a)− f∗
d∗(x, a)]2,

10Note that for model selection, we only require this concentration result
which uses a form of Freedman’s inequality. In particular, we do not
require the inverse gap weighting (IGW) randomization of FALCON. For
any contextual bandit algorithm, that estimates the prediction function over
multiple epochs, ACB can be employed for model selection.
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where the third inequality follows from the fact that given

context x, the distribution of r in independent of a (see [7,

Lemma 4.1]).

So, we have

Ex,r,a[f(x, a)− r(a)]2 ≥ Ex,r,a[r(a)− f∗
d∗(x, a)]2

+ Ex,a[f(x, a)− f∗
d∗(x, a)]2

≥ ∆+ σ2,

where the last inequality comes from the separability assump-

tion along with the assumption on the second moment. Since

the regressor f̂m
j ∈ Fj , we have

Ex,r,a[f̂
m
j (x, a)− r(a)]2 ≥ Ex,r,a[r(a) − f∗

d∗(x, a)]2

+ Ex,a[f(x, a)− f∗
d∗(x, a)]2

≥ ∆+ σ2.

Now, using 2m−2 samples, we obtain from Hoeffding’s in-

equality that

Sm
j ≥ ∆+ σ2 − C5

√
log(1/δ)

2m/2
− C6

√
m

2m/2

with probability at least 1 − δ/2m. In particular, since 2m &

max{logT, log(|FM |), log(1/δ)}, there is a global constant

c1 such that, for any j < d∗,

Sm
j ≥ ∆+ σ2 − c1

2m/2
, (12)

holds with probability at least 1− δ/2m.

In every phase m, denote by the threshold γm := Sm
M +√

m
2m/2 , i.e., the Model Selection parameter in Line 8 of Algo-

rithm 3. Now, let m0 be the smallest value of m satisfying

2m & max{ log T
∆2 , log(|FM |), log(1/δ)}. We have from Equa-

tions (11) and (12) and a union bound over the M classes that,

with probability at-least 1 −∑m≥1 2Mδ2−m, for all phases

m ≥ m0,

Sm
j ≥ σ2 +∆− c1

2m/2
, for all 1 ≤ j < d∗,

σ2 − c0
2m/2

≤ Sm
j ≤ σ2 +

c0
2m/2

, for all j ≥ d∗.

The preceding display, along with the fact that the threshold

γm = SM
m +

√
m
2m , gives that, with probability at-least 1−2Mδ

and all phases m ≥ m0,

Sm
d∗ ≤ σ2 +

c0
2m/2

≤ σ2 − c0
2m/2

+

√
m

2m/2
≤ γm ≤ σ2 +

c0
2m/2

+

√
m

2m/2
≤ σ2 +∆− c1

2m/2
.

The second inequality follows since 2m & log T
∆2 , by definition

of m0. The above equations guarantee that, with probability

at-least 1− 2Mδ, in all phases m ≥ m0, the model selection

procedure in Line 8 of Algorithm 3, identifies the correct class

d∗.

D. Proof of Theorem 2

The above calculation shows that as soon as

2m & max{log(|FM |), log(1/δ), logT∆−2},

the model selection procedure will succeed with high prob-

ability. Until the above condition is satisfied, we do not

have any handle on the regret and hence the regret in that

phase will be linear. This corresponds the first term in the

regret expression. Suppose m∗ be the epoch index where the

conditions of Lemma 2 hold. Lemma 2 gives that the total

number of rounds till the beginning of phase m∗ is upper

bounded by O(max{log(|FM |), log(1/δ), logT∆−2}), where

O hides global absolute constants. Then, the total regret is

given by

R(T ) ≤ O(max{log(|FM |), log(1/δ), logT∆−2})

+

N∑

m=m∗

RACB(Fd∗)(m− th epoch)

with probability exceeding 1− 2Mδ, where N is the number

of epochs. We have

R(T ) ≤ O(max{log(|FM |), log(1/δ), logT∆−2})

+

N∑

m=m∗

RACB(Fd∗)(m− th epoch)

≤ O(max{log(|FM |), log(1/δ), logT∆−2})

+

N∑

m=1

RACB(Fd∗)(m− th epoch)

≤ O(max{log(|FM |), log(1/δ), logT∆−2})
+RACB(Fd∗)(T ),

which proves the theorem.

Now, let us focus on the case where FALCON is used as

the base algorithm. For the m− th epoch, with m ≥ m∗, the

regret is given by we have (see [1]):

N∑

m=m∗

O
(√

K(τm − τm−1) log(|Fd∗ |(τm − τm−1)/δm

)

with probability at least 1 − δm. So, the total regret is given

by

R(T ) ≤ O(max{log(|FM |), log(1/δ), logT∆−2)}

+

N∑

m=m∗

O
(√

K(τm − τm−1) log(|Fd∗ |(τm − τm−1)/δm

)
,

with probability at-least 1 − δ − 2Mδ. Simplifying the sum-

mation, we get

N∑

m=m∗

O
(√

K(τm − τm−1) log(|Fd∗ |(τm − τm−1)/δm

)

≤
N∑

m=1

O
(√

K(τm − τm−1) log(|Fd∗ |(τm − τm−1)/δm

)

≤ O(
√
K log(|Fd∗ |(T )/δ)

N∑

m=1

√
τm − τm−1,
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considering the leading terms. Note that, with τm = 2m, the

epoch length τm − τm−1 doubles with m. Let the length of

the N -th epoch is TN . We have

N∑

i=1

√
τm − τm−1 =

√
TN

(
1 +

1√
2
+

1

2
+ . . .N -th term

)

≤
√
TN

(
1 +

1√
2
+

1

2
+ ...

)

=

√
2√

2− 1

√
TN ≤

√
2√

2− 1

√
T ,

and this completes the proof of the theorem.

E. Proof of Theorem 3

a) Case I: Realizable Class: Consider j ≥ d∗. Using

calculations similar to the finite cardinality setting, we obtain

ESj ≤ σ2 + ξFj ,(1/T 1/4)(
√
T ) + 2(1/T 1/4),

where we use the definition of ξ(.), as given in Assumption 4.

Hence, invoking Hoeffding’s inequality, we obtain

Sj ≤ σ2 + ξFj ,(1/T 1/4)(
√
T ) + 2(1/T 1/4)

+ C1T
−1/4

√
log(1/δ)

≤ σ2 + ξFj ,(1/T 1/4)(
√
T ) + C1T

−1/4
√
log(1/δ)

with probability at least 1 − 2δ. We also have (from 2-sided

Hoeffding’s)

Sj ≥ σ2 − C2T
−1/4

√
log(1/δ)

b) Case II: Non-realizable Class: We now consider the

setting where j < d∗, meaning that f∗
d∗ does not lie in Fj . In

this case, similar to above, we have

ESj ≥ ∆+ σ2,

and hence

Sj ≥ ESj −
√

32 log(1/δ)√
T

≥ ∆+ σ2 −
√

32 log(1/δ)√
T

.

Now, with the threshold, γ = SM +
√

log T√
T

, provided

T & (logT )max
(
log
(
T 1/4ξFM ,(1/T 1/4)

)
,∆−4, log(1/δ)

)
,

the model selection procedure succeeds with probability at

least 1− 2Mδ, where we do a calculation similar to the proof

of Lemma 1.

After obtaining the correct model class, the regret expres-

sion comes directly from [1] in the infinite function class

setting.

F. Proof of Theorem 4

The proof follows by combining the proof of Theorem 2

and 3.

For the realizable classes, we have (from Assumption 4 and

converting the conditional expectation to unconditional one

with probability slack as 1/2m/2, similar to the proof of

Lemma 2),

ESm
j ≤ σ2 + ξFj ,1/2m/2(2m−2) + 2(

1

2m/2
),

and as a result

Sm
j ≤ σ2 + ξFj ,1/2m/2(2m−2) + C1

√
log(1/δ)

2m/2
+ C2

√
m

2m/2

with probability at least 1− 2δ/2m.

Similarly, for non-realizable classes we obtain

Sm
j ≥ ∆+ σ2 − C3

√
log(1/δ)

2m/2
− C4

√
m

2m/2

with probability at least 1− δ/2m.

Now, suppose we choose the threshold γ = Sm
M +

√
m

2m/2 .

Finally, we say that provided

2m & (log T )max{max
m

2m/2 ξFM ,1/2m/2(2m−2),

log(1/δ),∆−2},
the model selection procedure succeeds with probability ex-

ceeding

1−
∞∑

m=1

2Mδ/2m ≥ 1− 2Mδ.

The rest of the proof follows similarly to Theorem 2, and we

omit the details here.

IX. MODEL SELECTION FOR LINEAR STOCHASTIC

BANDITS

A. Proof of Theorem 5

We shall need the following lemma from [58], on the

behaviour of linear regression estimates.

Lemma 3: If M ≥ d and satisfies M =
O
((

1
ε2 + d

)
ln
(
1
δ

))
, and θ̂(M) is the least-squares estimate

of θ∗, using the M random samples for feature, where each

feature is chosen uniformly and independently on the unit

sphere in d dimensions, then with probability 1, θ̂ is well

defined (the least squares regression has an unique solution).

Furthermore,

P[||θ̂(M) − θ∗||∞ ≥ ε] ≤ δ.

We shall now apply the theorem as follows. Denote by θ̂i
to be the estimate of θ∗ at the beginning of any phase i, using

all the samples from random explorations in all phases less

than or equal to i− 1.

Remark 13: The choice T0 := O
(
d2 ln2

(
1
δ

))
in Equation

(1) is chosen such that from Lemma 4, we have that

P

[
||θ̂(⌈

√
T0⌉) − θ∗||∞ ≥

1

2

]
≤ δ
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Lemma 4: Suppose T0 = O
(
d2 ln2

(
1
δ

))
is set according to

Equation (1). Then, for all phases i ≥ 4,

P

[
||θ̂i − θ∗||∞ ≥ 2−i

]
≤ δ

2i
, (13)

where θ̂i is the estimate of θ∗ obtained by solving the least

squares estimate using all random exploration samples until

the beginning of phase i.
Proof 1: The above lemma follows directly from Lemma 3.

Lemma 3 gives that if θ̂i is formed by solving the least squares

estimate with at-least Mi := O
((

4i + d
)
ln
(

2i

δ

))
samples,

then the guarantee in Equation (13) holds. However, as T0 =
O
(
(d+ 1) ln

(
2
δ

))
, we have naturally that Mi ≤ 4ii

√
T0. The

proof is concluded if we show that at the beginning of phase

i ≥ 4, the total number of random explorations performed by

the algorithm exceeds i4i⌈√T0⌉. Notice that at the beginning

of any phase i ≥ 4, the total number of random explorations

that have been performed is

i−1∑

j=0

6i⌈
√
T0⌉ = ⌈

√
T0⌉

6i − 1

4
,

≥ i4i⌈
√
T0⌉,

where the last inequality holds for all i ≥ 10.

The following corollary follows from a straightforward

union bound.

Corollary 3:

P



⋂

i≥4

||
{
θ̂i − θ∗||∞ ≤ 2−i

}

 ≥ 1− δ.

Proof 2: This follows from a simple union bound as follows.

P



⋂

i≥4

{
||θ̂i − θ∗||∞ ≤ 2−i

}



= 1− P



⋃

i≥4

{
||θ̂i − θ∗||∞ ≥ 2−i

}

 ,

≥ 1−
∑

i≥4

P

[
||θ̂i − θ∗||∞ ≥ 2−i

]
,

≥ 1−
∑

i≥4

δ

2i
,

≥ 1−
∑

i≥2

δ

2i
,

= 1− δ

2
.

We are now ready to conclude the proof of Theorem 5.

Proof 3 (Proof of Theorem 5):

We know from Corollary 3, that with probability at-least

1 − δ, for all phases i ≥ 10, we have ||θ̂i − θ∗||∞ ≤
2−i. Call this event E . Now, consider the phase i(γ) :=

max
(
10, log2

(
1
γ

))
. Now, when event E holds, then for

all phases i ≥ i(γ), Di is the correct set of d∗ non-zero

coordinates of θ∗. Thus, with probability at-least 1 − δ, the

total regret upto time T can be upper bounded as follows

RT ≤
i(γ)−1∑

j=0

(
36iT0 + 6i⌈

√
T0⌉
)

+

⌈
log

36

(

T
T0

)

⌉

∑

j≥i(γ)

Regret(OFUL(1, δi; 36
iT0)

+

⌈
log

36

(

T
T0

)

⌉

∑

j=i(γ)

6j⌈
√
T0⌉. (14)

The term Regret(OFUL(L, δ, T ) denotes the regret of the

OFUL algorithm [22], when run with parameters L ∈ R+,

such that ‖θ∗‖ ≤ L, and δ ∈ (0, 1) denotes the probability

slack and T is the time horizon. Equation (14) follows, since

the total number of phases is at-most

⌈
log36

(
T
T0

)⌉
. Standard

result from [22] give us that, with probability at-least 1 − δ,

we have

Regret(OFUL(1, δ;T ) ≤ 4

√
Td∗ ln

(
1 +

T

d∗

)

×
(
1 + σ

√
2 ln

(
1

δ

)
+ d∗ ln

(
1 +

T

d

))
.

Thus, we know that with probability at-least 1 −∑i≥4 δi ≥
1 − δ

2 , for all phases i ≥ i(γ), the regret in the exploration

phase satisfies

Regret(OFUL(1, δi; 36
iT0) ≤ 4

√
d∗36iT0 ln

(
1 +

36iT0

d∗

)

×
(
1 + σ

√
2 ln

(
2i

δ

)
+ d∗ ln

(
1 +

36iT0

d∗

))
. (15)

In particular, for all phases i ∈ [i(γ), ⌈log36
(

T
T0

)
], with

probability at-least 1− δ
2 , we have

Regret(OFUL(1, δi; 36
iT0) ≤ 4

√
d∗36iT0 ln

(
1 +

T

d∗

)

×
(
1 + σ

√
2 ln

(
T

T0δ

)
+ d∗ ln

(
1 +

T

d∗

))
,

= C(T, δ, d∗)
√

36iT0, (16)

where the constant captures all the terms that only depend on

T , δ and d∗. We can write that constant as

C(T, δ, d∗) = 4

√
d∗ ln

(
1 +

T

d∗

)

×
(
1 + σ

√
2 ln

(
T

T0δ

)
+ d∗ ln

(
1 +

T

d∗

))
.
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Equation (16) follows, by substituting i ≤ log36

(
T
T0

)
in all

terms except the first 36i term in Equation (15). As Equations

(16) and (14) each hold with probability at-least 1 − δ
2 , we

can combine them to get that with probability at-least 1− δ,

RT ≤ 2T036
i(γ) +

log
36

(

T
T0

)

+1∑

j=0

C(T, δ, d∗)
√
36jT0

+ ⌈
√
T0⌉6log36

(

T
T0

)

,

≤ O


T036

i(γ) +
√
T + C(T, δ, d∗)

log
36

(

T
T0

)

+1∑

j=0

√
36jT0


 ,

(a)

≤ O
(
T0

2

γ5.18
+
√
T +
√
TC(T, δ, d∗)

)
,

= O
(

d2

γ5.18
ln2
(
1

δ

))
+ Õ

(
d∗

√
T ln

(
1

δ

))
.

Step (a) follows from 36 ≤ 25.18.

X. ALB-DIM FOR STOCHASTIC CONTEXTUAL BANDITS

WITH FINITE ARMS

A. ALB-Dim Algorithm for the Finite Armed Case

The algorithm given in Algorithm 5 is identical to the

earlier Algorithm 4, except in Line 8, this algorithm uses

SupLinRel of [3] as opposed to OFUL used in the previous

algorithm. In practice, one could also use LinUCB of [3] in

place of SupLinRel. However, we choose to present the

theoretical argument using SupLinRel, as unlike LinUCB,

has an explicit closed form regret bound (see [3]). The

pseudocode is provided in Algorithm 5.

In phase i ∈ N, the SupLinRel algorithm is instantiated

with input parameter 36iT0 denoting the time horizon, slack

parameter δi ∈ (0, 1), dimension dMi and feature scaling b(δ).
We explain the role of these input parameters. The dimension

ensures that SupLinRel plays from the restricted dimension

dMi . The feature scaling implies that when a context x ∈ X is

presented to the algorithm, the set of K feature vectors, each

of which is dMi dimensional are
φ
dMi (x,1)

b(δ) , · · · , φ
dMi (x,K)

b(δ) .

The constant b(δ) := O
(
τ
√

log
(
TK
δ

))
is chosen such that

P

[
sup

t∈[0,T ],a∈A
‖φM (xt, a)‖2 ≥ b(δ)

]
≤ δ

4
.

Such a constant exists since (xt)t∈[0,T ] are i.i.d. and φM (x, a)
is a sub-gaussian random variable with parameter 4τ2, for all

a ∈ A. Similar idea was used in [10].

B. Regret Guarantee for Algorithm 5

In order to specify a regret guarantee, we will need to

specify the value of T0. We do so as before. For any

N , denote by λ
(N)
max and λ

(N)
min to be the maximum and

minimum eigen values of the following matrix: ΣN :=

E

[
1
K

∑K
j=1

∑N
t=1 φ

M (xt, j)φ
M (xt, j)

T
]
, where the expecta-

tion is with respect to (xt)t∈[T ] which is an i.i.d. sequence

Algorithm 5 Adaptive Linear Bandit (Dimension) with

Finitely Many arms

1: Input: Initial Phase length T0 and slack δ > 0.

2: β̂0 = 1, T−1 = 0
3: for Each epoch i ∈ {0, 1, 2, · · · } do

4: Ti = 36iT0, εi ← 1
2i , δi ← δ

2i

5: Di := {i : |β̂i| ≥ εi
2 }

6: Mi := inf{m : dm ≥ maxDi}.
7: for Times t ∈ {Ti−1 + 1, · · · , Ti} do

8: Play according to SupLinRel of [59] with time hori-

zon of 36iT0 with parameters δi ∈ (0, 1), dimension

dMi and feature scaling b(δ) := O
(
τ
√

log
(
TK
δ

))
.

9: end for

10: for Times t ∈ {Ti + 1, · · · , Ti + 6i
√
T0} do

11: Play an arm from the action set A chosen uniformly

and independently at random.

12: end for

13: αi ∈Si×d with each row being the arm played during

all random explorations in the past.

14: yi ∈Si with i-th entry being the observed reward at the

i-th random exploration in the past

15: β̂i+1 ← (αT
i αi)

−1
αiyi, is a d dimensional vector

16: end for

with distribution D. First, given the distribution of x ∼ D, one

can (in principle) compute λ
(N)
max and λ

(N)
min for any N ≥ 1.

Furthermore, from the assumption on D, λ
(N)
min = Õ

(
1√
d

)
> 0

for all N ≥ 1. Choose T0 ∈ N to be the smallest integer such

that

√
T0 ≥ b(δ)max

(
32σ2

(λ
(⌈
√
T0⌉)

min )2
ln(2d/δ),

4

3

(6λ
(⌈
√
T0⌉)

max + λ
(⌈
√
T0⌉)

min )(d+ λ
(⌈
√
T0⌉)

max )

(λ
(⌈
√
T0⌉)

min )2
ln(2d/δ)

)
. (17)

As before, it is easy to see that

T0 = O

(
d2 ln2

(
1

δ

)
τ2 ln

(
TK

δ

))
.

Furthermore, following the same reasoning as in Lem-

mas 4 and 3, one can verify that for all i ≥ 4,

P

[
‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤ δ

2i .

Theorem 6: Suppose Algorithm 5 is run with input param-

eters δ ∈ (0, 1), and T0 as given in Equation (17), then with

probability at-least 1−δ, the regret after a total of T arm-pulls

satisfies

RT ≤ CT0
1

γ5.18
+ (1 + ln(2KT lnT ))3/2

√
Tdm∗ +

√
T .

The parameter γ > 0 is the minimum magnitude of the non-

zero coordinate of β∗, i.e., γ = min{|β∗
i | : β∗

i 6= 0}.
In order to parse the above theorem, the following corollary

is presented.

Corollary 4: Suppose Algorithm 5 is run with input param-

eters δ ∈ (0, 1), and T0 = Õ
(
d2 ln2

(
1
δ

))
given in Equation
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(17) , then with probability at-least 1 − δ, the regret after T
times satisfies

RT ≤ O

(
d2

γ5.18
ln2(d/δ)τ2 ln

(
TK

δ

))
+ Õ(

√
Td∗m).

Proof 4 (Proof of Theorem 6):

The proof proceeds identical to that of Theorem 5. Observe

from Lemmas 3 and 4, that the choice of T0 is such that for

all phases i ≥ 1, the estimate P

[
‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤ δ

2i .

Thus, from an union bound, we can conclude that

P

[
∪i≥4‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤ δ

4
.

Thus at this stage, with probability at-least 1− δ
2 , the following

events holds.

• supt∈[0,T ],a∈A ‖φM (xt, a)‖2 ≤ b(δ)

• ‖β̂i−1 − β∗‖∞ ≤ 2−i, for all i ≥ 10.

Call these events as E . As before, let γ > 0 be the smallest

value of the non-zero coordinate of β∗. Denote by the phase

i(γ) := max
(
10, log2

(
2
γ

))
. Thus, under the event E , for all

phases i ≥ i(γ), the dimension dMi = d∗m, i.e., the SupLinRel

is run with the correct set of dimensions.

It thus remains to bound the error by summing over the

phases, which is done identical to that in Theorem 5. With

probability, at-least 1− δ
2 −

∑
i≥4 δi ≥ 1− δ,

RT ≤
i(γ)−1∑

j=0

(
36jT0 + 6j

√
T0

)

+

⌈
log

36

(

T
T0

)

⌉

∑

j=i(γ)

Regret(SupLinRel)(36iT0, δi, dMi,b(δ))

+

⌈
log

36

(

T
T0

)

⌉

∑

j=i(γ)

6j
√
T0,

where Regret(SupLinRel)(36iT0, δi, dMi,b(δ)) ≤ C(1 +

ln(2K36iT0 ln 36
iT0))

3/2
√
36iT0dMi + 2

√
36iT0. This ex-

pression follows from Theorem 6 in [59]. We now use this

to bound each of the three terms in the display above.

Notice from straightforward calculations that the first term is

bounded by 2T036
i(γ) and the last term is bounded above by

36⌈√T0⌉6log36
(

T
T0

)

respectively. We now bound the middle

term as
⌈

log
36

(

T
T0

)

⌉

∑

j=i(γ)

Reg(SupLinRel)(36jT0, δi, d
∗
m, b(δ))

≤ b(δ)

(

⌈
log

36

(

T
T0

)

⌉

∑

j=i(γ)

C(1 + ln(2K36iT0 ln 36
iT0))

3/2

√
36iT0dMi + 2

√
36iT0

)
.

The first summation can be bounded as
⌈

log
36

(

T
T0

)

⌉

∑

j=i(γ)

C(1 + ln(2K36iT0 ln 36
iT0))

3/2
√
36iT0dMi

≤

⌈
log

36

(

T
T0

)

⌉

∑

j=i(γ)

C(1 + ln(2KT lnT ))3/2
√
36iT0d∗m,

= C1(1 + ln(2KT lnT ))3/2
√
Td∗m,

and the second by
⌈

log
36

(

T
T0

)

⌉

∑

j=i(γ)

2
√
36iT0 ≤ C1

√
T .

Thus, with probability at-least 1−δ, the regret of Algorithm

5 satisfies

RT ≤ 2T036
i(γ) + C(1 + ln(2KT lnT ))3/2

√
Td∗m + C2

√
T ,

where i(γ) := max
(
10, log2

(
2
γ

))
. Thus,

RT ≤ CT0
2

γ5.18
+ C(1 + ln(2KT lnT ))3/2

√
Td∗m + C1

√
T ,

as 36 ≤ 25.18

XI. NUMERICAL EXPERIMENTS

In this section we will verify the theoretical findings. We

concentrate on the linear contextual bandit setup. We compare

ALB-Dim with the (non-adaptive) OFUL algorithm of [22]

and an oracle that knows the problem complexity apriori. The

oracle just runs OFUL with the known problem complexity. At

each round of the learning algorithm, we sample the context

vectors from a d-dimensional standard Gaussian, N (0, Id).
The additive noise to be zero-mean Gaussian random variable

with variance 0.5.

In panel (a)-(c), we compare the performance of ALB-Dim

with OFUL ([22]) and an oracle who knows the true support

of θ∗ apriori. For computational ease, we set εi = 2−i in

simulations. We select θ∗ to be d∗ = 20-sparse, with the

smallest non-zero component, γ = 0.12. We have 2 settings:

(i) d = 500 and (ii) d = 200. In panel (d) and (e), we observe a

huge gap in cumulative regret between ALB-Dim and OFUL,

thus showing the effectiveness of dimension adaptation. In

panel (c), we plot the successive dimension refinement over

epochs. We observe that within 4− 5 epochs, ALB-Dim finds

the sparsity of θ∗.

Comparison of ALB (dim):: When θ∗ is sparse, we

compare ALB-Dim with 3 baselines: (i) the ModCB algorithm

of [10] (ii) the Stochastic Corral algorithm of [31] and (iii)

an oracle which knows the support of θ∗. We select θ∗ to

be d∗ = 20 sparse, with dimension d = 200 and d = 500.

The smallest non-zero component of θ∗ is 0.12. For ModCB,

we use ILOVETOCONBANDITS algorithm, similar to [6].
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Fig. 1. Synthetic experiments, validating the effectiveness of Algorithm 4 and comparisons with several baselines. All the results are averaged over 25 trials.

We select the cardinality of action set as 2 and select the

sub-Gaussian parameter of the embedding as unity. In Figures

1(d) and 1(e), we observe that, the regret of ALB (dim) is

better than ModCB and Stochastic Corral. The theoretical

regret bound for ModCB scales as O(T 2/3) (which is much

larger than the ALB-Dim algorithm we propose), and Figure

1(c), validates this. The Stochastic Corral algorithm treats

the base algorithms as bandit arms (with bandit feedback),

as opposed to ALB-Dim which, at each arm-pull, updates

the information about all the base algorithms. Thus, (Figs

1(d), 1(e)), ALB-Dim has a superior performance compared

to Stochastic Corral.
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