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A population partitioned into groups

• Identifying ‘groups’ of objects in a population given 
   indirect information on group memberships.

Community Detection - Abstract Definition 1



A population 

Community Detection - Examples

1. People on an Online Social Network grouped according to whether or    
     not they like or dislike a particular product or content.

2. Proteins classified into groups based on their functional behavior.

3. Grouping Base-Stations based on similarities in traffic pattern.

partitioned into groups

• Identifying ‘groups’ of objects in a population given 
   indirect information on group memberships.
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Graph as Information

The data is structured as follows - 

Membership Information - Encoded as labeled edges of the graph.

Useful sub-class of the general problem

Population - Represented as nodes of a graph.

‘Stochastic Block Model’ - The simplest toy model to study this class of 
problems.
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The simplest case, SBM(n,a,b)           ,                   is a random graph   

Population of size n

Color uniformly and independently

Conditional on the colors, draw an 
edge between two members with probability

  - a if they have same colors.
  - b if they have different colors.

Stochastic Block Model (SBM) 4

n 2 N a, b 2 [0, 1]



1. Sparse - (Finite Average Degree)

The SBM is either

2. Non-Sparse - Average Degree goes to infinity as                .

SBM for applications

n ! 1

The sparse SBM  is ‘Tree-Like’ around any typical vertex ! 

Not very convincing in practice.

[Mossel, Neeman, Sly ’12]
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Social networks are Sparse and transitive

Sparsity - Dunbar’s number : 

An average human being cannot have more than 200 relationships at any 
point of time. This bound is a fundamental cognitive limitation, not a 
limitation of resources.

If i and j are friends, j and k are friends then i and k are likely to be friends

Models for Social Network

Transitivity

i

j k
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1. The members of a social network are points in a ‘Latent Social Space’.
  
This is typically an unobservable abstract space, but in certain applications, 
it can be geographic or some feature space (age, income).

2. Conditional on the location in this latent space, edges are drawn 
independently at random depending on the Euclidean distance.

Latent Space Model

Our Network Model - The simplest ‘planted version’ of the above. 
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A class of models introduced by 
[Hoff, Raftery, Handcock, 02], [Handcock, Raftery, Tantrum, 07].



Planted Partition Random Connection Model
Vertex Set -     , i.e. countably infinite set.   N

i 2 N

Conditional on node labels, edges are drawn independently at random.

{�1,+1}{Zi}i2N - i.i.d. sequence with each uniformly distributed on

Model Parameters 
� > 0 f

in

(·), f
out

(·) : R+ ! [0, 1] s.t 8r � 0 , f
in

(r) � f
out

(r)d � 2

Statistical Assumptions

The locations               form a Poisson Point Process of intensity    on    {Xi}i2N � Rd

,

orfin(||Xi �Xj ||) if Zi = Zj f
out

(||X
i

�X
j

||) if Z
i

6= Z
j

Two nodes                are connected with probabilityi 6= j 2 N

1.

2.
3.

Each node           has two labels - 
        location label             Xi 2 Rd Zi 2 {�1, 1}and  a community label                

, .

(On average, more edges within communities than across)
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p
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p
n

Place                points independently 
and  uniformly in

9
Planted Partition Random Connection Model

Poi(�n) 
�n1/d

2

n1/d

2

�



p
n

p
n

Place                points independently 
and  uniformly in

Color uniformly  and independently
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Planted Partition Random Connection Model

Poi(�n) 
�n1/d

2

n1/d

2

�



Conditional on the location and 
colors, draw edges independently. 

Two points at distance     are connected with probability
•              - if they have same colors.
•              - if they have opposite colors.

r
fin(r)
f
out

(r)

p
n

p
n

Place                points independently 
and  uniformly in

Ignore Edge Effects

Color uniformly  and independently

Denote by graph by       and its “limit” as              by 
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Planted Partition Random Connection Model

Poi(�n) 
�n1/d

2

n1/d

2

�

Gn n ! 1 G



denotes the number of nodes in 
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Planted Partition Random Connection Model

p
n

p
n

Average number of neighbors in the
 
same community 

opposite community

Z

x2Rd

f

in

(||x||)dx� o(1)

Z

x2Rd

f

out

(||x||)dx� o(1)

Nodes are indexed in increasing      distance of its location labels, 
i.e.
 

l1
||Xi||1 < ||Xi+1||1 8i 2 N .

Sparsity implies - 
Z

x2Rd

f

out

(||x||)dx 
Z

x2Rd

f

in

(||x||)dx < 1

Nn Gn
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Community Detection Problem

p
n

p
n

Given       and                    , can one 
produce an estimate                   of the 
community labels ?       

Gn {Xi}i2[0,Nn]

{⌧i}i2[0,Nn]

Will assume                              to be known�, d, f
in

(·), f
out

(·)

lim
n!1

P
"����

NnX

i=1

⌧iZi

Nn

���� > �

#
= 1

Community Detection solvable if             and                   which are 
measurable functions of                               such that   

9� > 0 {⌧i}i2[0,Nn]

(Gn, {Xi}i2[0,Nn])

(Asymptotically beating a random guess)
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Monotonicity

                                     ,                         such that -   8f
in

(·), f
out

(·), d � 2

Community Detection is not solvable.
Community Detection is solvable

9�c 2 [0,1]
� < �c =)
� > �c =)

Proof - Independently deleting nodes from the (planted partition) random 
connection model yields another (planted partition) random connection 
model.

However not satisfying - 

�c could be either  0 or1
No insight into designing efficient algorithms
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Solvability Phase Transition

Theorem -                                     ,                                such that -   8f
in

(·), f
out

(·), d � 2

Community Detection is not solvable.

Our algorithm solves Community Detection efficiently.

90 < �1  �2 < 1
� < �1 =)
� > �2 =)

Proposition -  In certain special cases, we find              , i.e. characterize 
the exact phase-transition point. 

�1 = �2

fin(r) = 1rR1 f
out

(r) = 1
rR2 0  R2 < R1, with

In general, characterizing the exact-phase transition is hard - 

The location of the phase-transition for percolation in random connection 
models is itself unknown.



Impossibility
Consider the following easier problem - 

Given the data                           , can you classify any two randomly 
chosen nodes better than chance.

����

PNn

i=1 Zi⌧i
Nn

���� � �

(G, {Xi}i2[1,Nn])

p
n

p
n

If Community Detection is solvable, i.e. if

, then the above can be solved

with success probability at-least

(Cluster the whole graph and then answer)

Will prove that the question above is not solvable for sufficiently small �

1 + �

2
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Impossibility
W.h.p, the distance between the two chosen nodes is ‘large’ 
— in particular larger than any constant r

An easier problem

Can you estimate better than chance, the community label of a random 
node in      given the infinite graph    ,                all locations and all 
community labels of nodes that are at a distance     or more from this 
chosen node.

GGn {Xi}i2N
r
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Information Flow from Infinity Problem

If answer above is NO, then by classical ergodic arguments
Community Detection is not solvable.

r

Does                 and                             as a measurable function of        9�
0
> 0

G, {Xi}i2N, {Zi : ||Xi|| > r}
⌧

0

0 2 {�1,+1}
such that                                               ?lim inf

r!1
P0[⌧

0

0 = Z0] �
1

2
+ �

0

P0 Palm Probability measure - Place a fictitious node at origin with an independent 
community label       and independent edges to Z0 G
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Corollaries
1. If           , then community detection is not 
     solvable for any                         .

2.  If                                                 ,
     then community detection is not solvable.

Information Flow from Infinity Problem

Does                 and                             as a measurable function of        9�
0
> 0

G, {Xi}i2N, {Zi : ||Xi|| > r}
⌧

0

0 2 {�1,+1}
such that                                               ?lim inf

r!1
P0[⌧

0

0 = Z0] �
1

2
+ �

0

Theorem - If the random connection model on a PPP of intensity     and
connection function                          does not percolate, then the answer to 
the above question is NO.

�
f
in

(·)� f
out

(·)

d = 1
�, f

in

(·), f
out

(·)

�

Z

x2Rd

(f
in

(||x||)� f

out

(||x||))dx  1

r
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Consider an illustrative example. 

fin(r) = 1rRin f
out

(r) = 1
rRinLet and where R

in

> R
out

Information Flow from Infinity Problem

Therefore in     , any two nodes will have
1) An edge if they are within a distance of

2) No edge if they are more than a distance of

3) An edge only if they belong to same community and are at a distance          
of 

G
R

out

Rin

(R
out

, R
in

]

OR
1

2

3 4

||X1 �X2||, ||X2 �X4||, ||X1 �X3|| 2 (R
out

, R
in

]

21



Information Flow from Infinity Problem
Consider. 

fin(r) = 1rRin , R
in

> R
out

A natural strategy

If 0 := X0, X1, · · ·Xk 2 �

  If       is known
||X

i

�X
i+1|| 2 (R

out

, R
in

]

 , then we can ‘propagate it to infer     .

f
out

(r) = 1
rR

out

9 8, i 2 [0, k � 1]

Zk Z0
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Information Flow from Infinity Problem
Consider. 

fin(r) = 1rRin , R
in

> R
out

A natural strategy

If 0 := X0, X1, · · ·Xk 2 �

  If       is known
||X

i

�X
i+1|| 2 (R

out

, R
in

]

 , then we can ‘propagate it to infer     .

f
out

(r) = 1
rR

out

9 8, i 2 [0, k � 1]

Zk Z0
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Information Flow from Infinity Problem
Consider. 

fin(r) = 1rRin , R
in

> R
out

A natural strategy

If 0 := X0, X1, · · ·Xk 2 �

  If       is known
||X

i

�X
i+1|| 2 (R

out

, R
in

]

 , then we can ‘propagate it to infer     .

f
out

(r) = 1
rR

out

9 8, i 2 [0, k � 1]

Zk Z0

24



Information Flow from Infinity Problem
Consider. 

fin(r) = 1rRin , R
in

> R
out

A natural strategy

If 0 := X0, X1, · · ·Xk 2 �

  If       is known
||X

i

�X
i+1|| 2 (R

out

, R
in

]

 , then we can ‘propagate it to infer     .

f
out

(r) = 1
rR

out

9 8, i 2 [0, k � 1]

Zk Z0
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Information Flow from Infinity Problem

Our result - If no such path exists, then cannot determine the label at 0.

Consider. 
fin(r) = 1rRin , R

in

> R
out

A natural strategy

If 0 := X0, X1, · · ·Xk 2 �

  If       is known
||X

i

�X
i+1|| 2 (R

out

, R
in

]

 , then we can ‘propagate it to infer     .

f
out

(r) = 1
rR

out

9 8, i 2 [0, k � 1]

Zk Z0
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Information Flow from Infinity Problem
Enriched probability space with marks on pairs of nodes. 

1) Sample the location labels and community labels as before.

2)                  - i.i.d.           random variables, 
      every pair                 nodes, marked with an independent uniform RV.

3) An edge between nodes                if and only if     

{Uij}i<j2N U [0, 1]
i < j 2 N

U
ij

 f
in

(||X
i

�X
j

||)1
Zi=Zj + f

out

(||X
i

�X
j

||)1
Zi 6=Zj

Thus the graph G is a deterministic function of node labels {(Xi, Zi)}i2N

and the edge labels                  .{Uij}i<j2N

i < j 2 N

27



Information Flow from Infinity Problem
                 , -i.i.d.           sequence, one for each pair of nodes.
An edge between nodes                if and only if     
{Uij}i<j2N U [0, 1]

i < j 2 N

U
ij

 f
in

(||X
i

�X
j

||)1
Zi=Zj + f

out

(||X
i

�X
j

||)1
Zi 6=Zj

Only certain edges are Informative

0

1

Uij
fin(||Xi �Xj ||)

f
out

(||X
i

�X
j

||)

No edge always

Presence of an edge always

An edge iff Zi = Zj

The presence or absence of an edge is only informative when 
U
ij

2 (f
out

(||X
i

�X
j

||), f
in

(||X
i

�X
j

||)]
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Information Flow from Infinity Problem

0

1

Uij
fin(||Xi �Xj ||)

f
out

(||X
i

�X
j

||)

No edge always

Presence of an edge always

An edge iff Zi = Zj

Create an Information Graph     from               and  {Xi}i2N {Uij}i<j2N

i ⇠
I

j () f
out

(||X
i

�X
j

||) < U
ij

 f
in

(||X
i

�X
j

||)
I

Structural Lemma -
i ⇠I j, i ⇠G j =) Zi = Zj

i ⇠I j, i ⌧G j =) Zi 6= Zj

Extend to connected components  
of    instead of just edges.   I
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Information Flow from Infinity Problem
Information Graph      i ⇠

I

j () f
out

(||X
i

�X
j

||) < U
ij

 f
in

(||X
i

�X
j

||)I

                 - Set of nodes in the connected component of origin in   .    VI(0) ⇢ N I

Lemma - On the event                     ,

P0


Z0 = +1

����G, {Uij}i<j , {Xi}i2N, {Zk}k2V {
I (0)

�
=

1

2
a.s.

|VI(0)| < 1

Community labels on disconnected components of    are independent.I

Proof - Bayes’ rule along with the previous structural observation.
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Information Flow from Infinity Problem

Does                 and                             as a measurable function of        9�
0
> 0

G, {Xi}i2N, {Zi : ||Xi|| > r}
⌧

0

0 2 {�1,+1}
such that                                               ?lim inf

r!1
P0[⌧

0

0 = Z0] �
1

2
+ �

0

From previous lemma, on the event                    , no estimator for the 
community label at origin can beat a random guess for large enough   .

|VI(0)| < 1
r

Corollary 
If                   a.s. , i.e. if     does not percolate, then 
the answer above is no.

|VI(0)| < 1 I

r
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Algorithm Idea 
32

Our spatial graph - locally dense but globally sparse

Consider the example fin(r) = a1rR f
out

(r) = b1
rR

,

Locally Dense - ‘Nearby’ nodes connect with constant probability independent of    
.Globally Sparse - Order     edges in total.

n

R

R

The sparse SBM is locally tree like.
Every node connects with each other with probability tending to 0.

n

SBMSpatial Graph



•                             if they belong to 
                               same community. 

Consider the example of fin(r) = a1rR f
out

(r) = b1
rR

and

Algorithm Idea

Locally Dense - Geometry around ‘nearby’ nodes have lot of information.

The number of common neighbors of two nodes is Poisson with mean 

R

R

↵R , ↵ < 2

•                    if they belong to different 
                       communities. 

33

�c(↵)Rd

✓
a2 + b2

2

◆

�c(↵)Rdab

Both are of order �



Same community - 

Opposite communities - 

Set threshold - 

Pairwise-Classify(x,y)
• IF # (common neighbors) <        , DECLARE  community(x) = community(y).
• ELSE DECLARE      community(x)     community(y).  

P(Mis-classifying a given pair of nodes at distance        )

Algorithm Idea

T (↵) = c(↵)Rd�

✓
a+ b

2

◆2

6=

34

�c(↵)Rd

✓
a2 + b2

2

◆

�c(↵)Rdab

T (↵)

R

R

↵R , ↵ < 2

x y

↵R  e��c
0
(↵)R

↵ < 2 =) c
0
(↵) > 0

Simple Chernoff bound - 



Tesselate       into grids of sideRd R/4

Cell Good if

1. At-least          the mean number of 
points

2. No inconsistencies in pairwise
      checks with all neighboring cells

1� ✏

Algorithm Idea

Same

Same

DifferentExample of Inconsistent output of 
Pairwise-Classify 

Classify cells to be Good or Bad.
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Algorithm Idea
36

- Create a partition of each good component.
  Unique partition of the nodes in good component compatible with

Pairwise-Classify 
- Output +1 estimate to all nodes in bad cells

Main Routine

For any                ,                     ,
such that                    the algorithm 
will succeed, i.e.

� 2 [0, 1) 9�0(�) < 1
8� � �0(�)

lim
n!1

P
"����

NnX

i=1

⌧iZi

Nn

���� > �

#
= 1

A k-Dependent Percolation Process. [Liggett, Schonmann, Stacey, ’97] 



Theorem - The induced measure by               is mutually singular with 
respect to that by      for any    ,                   and       where                                       

Distinguishability - Are there communities ?
37

H�,g(·),d
Random Connection Model on a PPP of intensity    
and connection function       .

f
in

(·), f
out

(·)
H�,g(·),d

G

�
g(·)

� f
in

6= f
out

a.e.g(·)

Are there communities at all
Determine whether the data                     is sampled from

1) The planted model with connection functions          and

{Xi}i2N, G

2)                - a model without planted communities.H�,g(·),d

fin(·) f
out

(·)

Can learn the presence of a partition, even though in some cases cannot
find it better than a random guess !

Theorem says we can answer this always. No phase-transition.



Theorem - The induced measure by               is mutually singular with 
respect to that by      for any    ,                   and       where                                       

Distinguishability Problem
38

f
in

(·), f
out

(·)
H�,g(·),d

G � f
in

6= f
out

a.e.g(·)

Proof - Then triangle profiles are different in the two models. 
Let     be a large constant.  Define

h̃(Xi) =
X

j,k2N,j 6=k 6=i

h(Xj �Xi, Xk �Xi)1i⇠Gj,i⇠Gk,j⇠Gk

h(x, y) = 1||x||L,||y||L,||x�y||L

L

At each node

Ergodicity and moment measure expansion implies the empirical average

is a.s. finite and different in the two models.lim
T!1

P
i2N 1||Xi||T h̃(Xi)P

i2N 1||Xi||T

An algorithm to test between the two models.



Conclusions

Future Work

• Relax the assumption that spatial locations are known. 
• Either known noisily or are missing completely.

• Sharp Phase-Transitions in some regimes of the problem. 
• Help characterize and design ‘optimal’ algorithms.

39

• A new model of random graph with planted communities.
• Spatial graphs are ‘locally-dense’  - basis for algorithms and analysis.

• Community Detection in the case with spatial labels 
    has a non-trivial phase transition.
• However can always identify the presence of a partition, i.e. no phase-

transition for the distinguishability problem.



Full paper on Arxiv - https://arxiv.org/abs/1706.09942

Thank You

https://arxiv.org/abs/1706.09942

