Medium Access and Interference Cancellation: Protocol and Evaluation

Abishek Sankararaman and François Baccelli

Introduction

• Focus: Medium Access problem in Ad-hoc networks.

• Aim: Propose simple implementable protocols by incorporating observations and results from Information Theory.

Motivation

- Some key features of emerging wireless networks
 - Dense
 - Decentralized Control

D2D Communication

Vehicular Communication (802.11p)

Motivation

- Some key features of emerging wireless networks
 - Dense
 - Decentralized Control

D2D Communication

Vehicular Communication (802.11p)

Managing Interference is a key challenge - primarily handled through Medium Access Control algorithms in ad-hoc networks.

Popular Medium Access Solution

- CSMA (Carrier Sense Multiple Access) 802.11 standards
- 'Interference as Noise' (IAN) paradigm.

Popular Medium Access Solution

- CSMA (Carrier Sense Multiple Access) 802.11 standards
- 'Interference as Noise' (IAN) paradigm.

• Simple Distributed Implementation (RTS/CTS)

Ad-hoc Network - Interference Channel

• Capacity and achievability is unknown in general.

Results from Information Theory

- Capacity and achievability is unknown in general.
- $a \rightarrow 0$, IAN is optimal.
- $a \to \infty$, SIC (Successive Interference Cancellation) decoding is optimal.

(Receivers treat the transmitters as a MAC channel).

Successive Interference Cancellation

Gaussian Codebook

Received Powers P_i, Rates R_i

$$C\left(\frac{P_i}{N_0 + \sum_{j=i+1}^3 P_j}\right) \ge R_i \ , i \in \{1, 2, 3\}.$$

where $P_i > P_j \ \forall i < j$, $C(x) = \frac{1}{2} \log_2(1+x)$

Successive Interference Cancellation

Gaussian Codebook

Received Powers P_i, Rates R_i

$$C\left(\frac{P_i}{N_0 + \sum_{j=i+1}^3 P_j}\right) \ge R_i \ , i \in \{1, 2, 3\}.$$

where $P_i > P_j \ \forall i < j$, $C(x) = \frac{1}{2} \log_2(1+x)$

• Separation of Powers needed to ensure decodability !

SIC - Separation of Powers

Received Powers P_i, Symmetric Rate R

$$\frac{P_i}{N_0 + I + \sum_{j=i+1}^k P_j} \ge Q \qquad P_i > P_j \ \forall i < j$$

SIC - Separation of Powers

Received Powers P_i, Symmetric Rate R

$$\frac{P_i}{N_0 + I + \sum_{j=i+1}^k P_j} \ge Q \qquad P_i > P_j \ \forall i < j$$

• Separation of Powers needed to ensure decodability ! P_i needs to be significantly larger than P_{i+1}

General capacity region is unknown

General capacity region is unknown

Any pair of links form a 2 user interference channel.

General capacity region is unknown

Any pair of links form a 2 user interference channel.

If $a_{51} >> a_{11}$ and $a_{15} >> a_{55}$, then

• CSMA/CA will schedule at most one link.

General capacity region is unknown

Any pair of links form a 2 user interference channel.

If $a_{51} >> a_{11}$ and $a_{15} >> a_{55}$, then

- CSMA/CA will schedule at most one link.
- However if the receivers can perform SIC, then both links could potentially be scheduled.

General capacity region is unknown

Any pair of links form a 2 user interference channel.

- If $a_{51} >> a_{11}$ and $a_{15} >> a_{55}$, then
- CSMA/CA will schedule at most one link.
- However if the receivers can perform SIC, then both links could potentially be scheduled.

Need to define when a cross interference is 'strong'.

CSMA 1-SIC Protocol

Schematic of CSMA/CA

Schematic of proposed CSMA 1-SIC protocol.

CSMA 1-SIC Protocol

R₃ T₄ R₁ Guard Zone around a receiver R₄ T₁

 T_2

Schematic of CSMA/CA

Schematic of proposed CSMA 1-SIC protocol.

Separation of Received Powers - Donut Shaped Guard Zone.

 R_2

<u>Summary</u>

- Randomized Protocol (Timers Chosen randomly).
- 2 parameters to tune.

• Guarantees to any scheduled receiver that there will be atmost one '*strong*' interfering transmitter.

CSMA k-SIC Protocol

- The separation of powers leads to 2k parameter protocol.
- One can then develop a similar signaling algorithm.

CSMA /CA Versus CSMA 1-SIC

CSMA /CA Versus CSMA 1-SIC

• Averaged over timer values however, CSMA 1-SIC schedules more links.

CSMA /CA Versus CSMA 1-SIC

- Averaged over timer values, CSMA 1-SIC schedules more links.
- This also means, that the interference levels are higher.

Performance Evaluation - Setup

- A Stochastic Network Model to compare the gains in adopting the protocol.
 - Dipole Network Model -
 - Each Tx has an unique Rx. Tx form a PPP and the corresponding Rx is located at an uniform and independent angle away.

34

Performance Evaluation - Setup

- A Stochastic Network Model to compare the gains in adopting the protocol.
 - Dipole Network Model -
 - Each Tx has an unique Rx. Tx form a PPP and the corresponding Rx is located at an uniform and independent angle away.
 - No Power Control.

All scheduled Tx transmit at unit power.

• <u>Fading</u> -

Channel between any pair of devices is random and symmetric

• Path loss - $I(r) = r^{-4}$

$$F_{xy}l(||x-y||)$$

- The metrics
 - MAP (Medium Access Probability (pa))

- The metrics
 - MAP (Medium Access Probability (p_a)) SINR > Q
 - Success Density (Fraction of scheduled links successful (ps))

- The metrics
 - MAP (Medium Access Probability (p_a)) SINR > Q
 - Success Density (Fraction of scheduled links successful (ps))
 - Throughput (Fraction of links that get scheduled and are successful)

- The metrics
 - MAP (Medium Access Probability (p_a)) SINR > Q
 - Success Density (Fraction of scheduled links successful (ps))
 - Throughput (Fraction of links that get scheduled and are successful)

Throughput = $\lambda p_s p_a$

Performance Evaluation - MAP

In large random networks, more links get scheduled on average.

Performance Evaluation - Success Probability

CSMA 1-SIC has higher interference since it schedules aggressively !

Performance Evaluation - Throughput

Nonetheless, CSMA 1-SIC has higher throughput !

Throughput Optimization

Performing SIC improves throughput.

Throughput = $\lambda p_s p_a$

Throughput Optimization

Throughput =
$$\lambda p_s p_a$$

Performing SIC improves throughput.

Higher order SIC

- 2k parameters to choose and optimize over.
- Expect some form of 'diminishing returns' by increasing k.
- No clean performance comparisons with CSMA IAN yet.

Open Problems - Computational

Computation of densities (MAP)

- Exact computation is hard for even regular CSMA/CA.
- Matérn like approximation
 - An incoming link must compete with all other links having a smaller timer value regardless of whether they were scheduled.

Open Problems - Computational

Computation of densities (MAP)

- Exact computation is hard for even regular CSMA/CA.
- Matérn like approximation
 - An incoming link must compete with all other links having a smaller timer value regardless of whether they were scheduled.

- Hard to compute even under this approximation !
 - A link is scheduled only if a transmitter does not *'kill'* a receiver with smaller timer value.
 - Extremal shot noise of the point process formed from all possible k+1 tuples of the points of a PPP is needed.

Open Problems - Physical

Summary and Conclusions

Looked at an improved paradigm for designing protocols.
Implementable distributed protocols from simple observations.

• A more fundamental question - 'What is a *good* protocol' ? 'Fairness Efficiency' tradeoff for spatial wireless resource.

