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Introduction

* Focus: Medium Access problem in Ad-hoc networks.

 Aim: Propose simple implementable protocols by
iIncorporating observations and results from Information

Theory.
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Motivation

« Some key features of emerging wireless networks
- Dense
- Decentralized Control
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¢ Obstacle <

D2D Communication Vehicular Communication (802.11p)
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Motivation

« Some key features of emerging wireless networks
- Dense
- Decentralized Control

¢ Obstacle 3

D2D Communication Vehicular Communication (802.11p)

Managing Interference is a key challenge - primarily handled
through Medium Access Control algorithms in ad-hoc networks.
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Popular Medium Access Solution

« CSMA (Carrier Sense Multiple Access) - 802.11 standards
* ‘Interference as Noise’ (IAN) paradigm.
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Popular Medium Access Solution

« CSMA (Carrier Sense Multiple Access) - 802.11 standards
* ‘Interference as Noise’ (IAN) paradigm.

No Interfering Transmitters

Guard Zone around a scheduled receiver

CSMA/CA Schematic

e Simple Distributed Implementation (RTS/CTS)
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Ad-hoc Network - Interference Channel

>< 2 user interference channel

e Capacity and achievability is unknown in general.
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Results from Information Theory

>< 2 user interference channel

e Capacity and achievability is unknown in general.

e a— 0 , AN is optimal.

 a— 00, SIC (Successive Interference Cancellation)
decoding is optimal.
(Receivers treat the transmitters as a MAC channel).
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Successive Interference Cancellation

T+

To Rxr

Gaussian Codebook
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Received Powers P; Rates R;
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where P, >P;jVi<j  C(z) = 3logy(1+ x)
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Successive Interference Cancellation

T+

To Rxr

Gaussian Codebook

i

T3

Received Powers P; Rates R;

C (st

No+>.°_, 41 P

)zR@- i€ {1,2,3}).

where P, >P;jVi<j  C(z) = 3logy(1+ x)

e Separation of Powers needed to ensure decodability !

e
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SIC - Separation of Powers

T+

To Rxr

i

T3

Received Powers Pi Symmetric Rate R

P;

j=i+1 1
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SIC - Separation of Powers

T+

To Rxr

i

T3

Received Powers Pi Symmetric Rate R

P;

j=i+1 17

Pi>Pj\V/7;<j

e Separation of Powesrs needed to ensure decodability !

e

P; needs to be significantly larger than P,

EV=ECE

12



Main Idea of an Improved Protocol

Rs To
\T3 \ General capacity region is unknown
R
o .T4 T 2
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Main Idea of an Improved Protocol

R4

Rs To

T3 General capacity region is unknown

Any pair of links form a 2 user interference channel.
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Main Idea of an Improved Protocol

Rs To
T3 General capacity region is unknown
Ro
T Any pair of links form a 2 user interference channel.

If as1 >> a11 and a15 >> ass, then
e CSMA/CA will schedule at most one link.
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Main Idea of an Improved Protocol

Rs To
T3 General capacity region is unknown
Ro
R4
T Any pair of links form a 2 user interference channel.

If as1 >> a11 and a5 >> as5 , then

« CSMA/CA will schedule at most one link.

* However if the receivers can perform SIC, then both links could
potentially be scheduled.
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Main Idea of an Improved Protocol

Rs To
T3 General capacity region is unknown
Ro
R4
T Any pair of links form a 2 user interference channel.

If as1 >> a11 and a5 >> as5 , then

« CSMA/CA will schedule at most one link.

 However if the receivers can perform SIC, then both links could
potentially be scheduled.

Need to define when a cross interference is ‘strong'.

e
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CSMA 1-SIC Protocol
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Schematic of CSMA/CA
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Schematic of proposed
CSMA 1-SIC protocol.
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CSMA 1-SIC Protocol
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Schematic of proposed
CSMA 1-SIC protocol.

Schematic of CSMA/CA

Separation of Received Powers - Donut Shaped Guard Zone.

e
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CSMA 1-SIC Signaling

Assume time-slotted system.
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CSMA 1-SIC Signaling

Each link (Tx) samples a Random Timer Value in say [0,1]

Tx ‘senses’ channel till timer expires.
{3

t1

to BX to TX

to

ta
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CSMA 1-SIC Signaling

Tx ‘senses’ channel till timer expires.

{3

{6 .RX to Tx b s
Nnd'RTS

ta

EV=ECE

22




CSMA 1-SIC Signaling

Rx ‘senses’ to hear a RTS.

{3

5 .RX to Tx b o
Nd'CTS

ta
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CSMA 1-SIC Signaling

Rx ‘senses’ to hear a RTS.

{3

t1

X to X, .
NAd'CTS

to

ta
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CSMA 1-SIC Signaling

Tx broadcasts ‘Established’ to silence nearby receivers
{3

t1

.Rx to TX L .
end Established

to

ta
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CSMA 1-SIC Signaling

Tx broadcasts ‘Established’ to silence nearby receivers
{3

t1

.Rx to TX L .
end Established

to

ta
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CSMA 1-SIC Signaling

Tx transmits ‘Established” signal

Estab\ished
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CSMA 1-SIC Signaling

Rx transmits ‘Blocked signal to silence all other strong interferers

{3

t1

.Rx to TXx

to

ta
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CSMA 1-SIC Signaling

summary
 Randomized Protocol (Timers Chosen randomly).
e 2 parameters to tune.

 (Guarantees to any scheduled receiver that there will be at-
most one ‘strong’ interfering transmitter.
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CSMA k-SIC Protocol

Q@ne Interfering Transmitter Allowed -

———————————

ULI9}J91U] ONY

Joplwsued) 3

e [he separation of powers leads to 2k parameter protocol.
 One can then develop a similar signaling algorithm.

e
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CSMA /CA Versus CSMA 1-SIC

Non-Monotonicity

C— o—1
{1 to {1 P2
- o—_ o—1a o—1
ta {4
o— o—1
CSMA/CA CSMA 1-SIC
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CSMA /CA Versus CSMA 1-SIC

Non-Monotonicity

C— o—1
t1 %2 {1 to
o—7 o—1 o—1a o—1
ta {4
o—1 o—1
CSMA/CA CSMA 1-SIC

* Averaged over timer values however, CSMA 1-SIC schedules

e

more links.
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CSMA /CA Versus CSMA 1-SIC

Non-Monotonicity

C— o—1
t1 %2 {1 to
o—a o—1 o—1a o—1
ta {4
o—1 o—1
CSMA/CA CSMA 1-SIC

* Averaged over timer values, CSMA 1-SIC schedules more links.

e

* This also means, that the interference levels are higher.
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Performance Evaluation - Setup

e A Stochastic Network Model to compare the gains in adopting the

protocol.

- Dipole Network Model -
Each Tx has an unique Rx. Tx form a PPP and the corresponding Rx is
located at an uniform and independent angle away.
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Performance Evaluation - Setup

e A Stochastic Network Model to compare the gains in adopting the

protocol.

Dipole Network Model -
Each Tx has an unique Rx. Tx form a PPP and the corresponding Rx is
located at an uniform and independent angle away.

No Power Control.
All scheduled Tx transmit at unit power.

- Fading -
Channel between any pair of devices is random and symmetric

Path loss - I(r) = r4

Fuyl(ll2 ~ o) 1
.~ ~
" 4
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Performance Evaluation - Metrics

* The metrics
- MAP - (Medium Access Probability (pa) )
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Performance Evaluation - Metrics

 The metrics
- MAP - (Medium Access Probability (pa) ) SINR > Q
- Success Density - (Fraction of scheduled links successful (ps) )
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Performance Evaluation - Metrics

e [he metrics

- MAP - (Medium Access Probability (pa) ) SINR > Q

- Success Density - (Fraction of scheduled links successful (ps) )
- Throughput - (Fraction of links that get scheduled and are successful)
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Performance Evaluation - Metrics

e [he metrics

- MAP - (Medium Access Probability (pa) ) SINR > Q

- Success Density - (Fraction of scheduled links successful (ps) )
- Throughput - (Fraction of links that get scheduled and are successful)

Throughput = APspa /
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Performance Evaluation - MAP

Rayleigh Fading No fading
0.8 ‘ ‘ ‘ 0.8 ‘ ‘ ‘
—-—CSMA IAN ——CSMA |IAN
0.7 -=CSMA 1-SIC! 0.7 -=-CSMA 1-SIC|

0.1 ‘ ‘ ‘ 0.1

In large random networks, more links get scheduled on average.
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Performance Evaluation - Success Probability

Rayleigh Fading No Fading
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CSMA 1-SIC has higher interference since it schedules aggressively !

e
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Performance Evaluation - Throughput

Rayleigh Fading No Fading
0.2 ‘ 0.28 ‘
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Nonetheless, CSMA 1-SIC has higher throughput !

EV=ECE

42



Throughput Optimization

Throughput = Apspa

0.55 |—CSMA IAN
---CSMA 1-SIC

0.5 |=csma 1-siC (Constrained)
5 0.45- ——Aloha + 1-SIC

. Donut shaped Guard zone
- - = IS indeed required
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Optimal Throughpu
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0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Performing SIC improves throughput.
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Throughput Optimization

Throughput = Apspa

Rayleigh Fade No Fade
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Performing SIC improves throughput.
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Higher order SIC

e 2K parameters to choose and optimize over.
e Expect some form of ‘diminishing returns’ by increasing k.
* No clean performance comparisons with CSMA [AN yet.

QOne Interfering Transmitter Allowed -~

--------------

uLI94Iau| ON-

Joniwsued] 8
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Open Problems - Computational

Computation of densities (MAP)
e Exact computation is hard for even regular CSMA/CA.

* Matérn like approximation
* Anincoming link must compete with all other links having a smaller timer value
regardless of whether they were scheduled.
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Open Problems - Computational

Computation of densities (MAP)
e Exact computation is hard for even regular CSMA/CA.

* Matérn like approximation

* Anincoming link must compete with all other links having a smaller timer value
regardless of whether they were scheduled.

* Hard to compute even under this approximation !

* Alink is scheduled only if a transmitter does not ‘kill’ a receiver with smaller
timer value.

* Extremal shot noise of the point process formed from all possible k+1 tuples of
the points of a PPP is needed.
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Open Problems - Physical

30

1-SIC Scheduling Outcome
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Summary and Conclusions

 Looked at an improved paradigm for designing protocols.
- Implementable distributed protocols from simple observations.

* A more fundamental question - ‘What is a good protocol’ ?
‘Fairness Efficiency’ tradeoff for spatial wireless resource.
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