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Abstract

Background: Haplotypes, the ordered lists of single nucleotide variations that distinguish
chromosomal sequences from their homologous pairs, may reveal an individual’s susceptibility
to hereditary and complex diseases and affect how our bodies respond to therapeutic drugs.
Reconstructing haplotypes of an individual from short sequencing reads is an NP-hard prob-
lem that becomes even more challenging in the case of polyploids. While increasing lengths
of sequencing reads and insert sizes helps improve accuracy of reconstruction, it also exacer-
bates computational complexity of the haplotype assembly task. This has motivated the pursuit
of algorithmic frameworks capable of accurate yet efficient assembly of haplotypes from high-
throughput sequencing data.
Results: We propose a novel graphical representation of sequencing reads and pose the hap-
lotype assembly problem as an instance of community detection on a spatial random graph.
To this end, we construct a graph where each read is a node with an unknown community
label associating the read with the haplotype it samples. Haplotype reconstruction can then
be thought of as a two-step procedure: first, one recovers the community labels on the nodes
(i.e., the reads), and then uses the estimated labels to assemble the haplotypes. Based on this
observation, we propose ComHapDet – a novel assembly algorithm for diploid and ployploid hap-
lotypes which allows both bialleleic and multi-allelic variants.
Conclusions: Performance of the proposed algorithm is benchmarked on simulated as well
as experimental data obtained by sequencing Chromosome 5 of tetraploid biallelic Solanum-
Tuberosum (Potato). The results demonstrate the efficacy of the proposed method and that it
compares favorably with the existing techniques.

1 Introduction and Background

Technological advancements in DNA sequencing have enabled unprecedented studies of genetic
blueprints and variations between individual genomes. An individual genome of a eukaryotic or-
ganism is organized in K-tuples of homologous chromosomes; diploids (K = 2), including humans,
have genomes organized in pairs of homologous chromosomes where the chromosomes in a pair
differ from each other at a small fraction of positions. The ordered lists of such variants – the
so-called single nucleotide polymorphisms (SNPs) – are referred to as haplotypes. Many plants
are polyploid, i.e., have genomes organized in K-tuples, K > 2, of homologous chromosomes; for
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instance, the most commonly grown potato crop (Solanum Tubersoum) is a tetraploid organism
with a total of 48 chromosomes (i.e., 12 distinct quadruplets). Haplotype information of an indi-
vidual is useful in a wide range of applications. For instance, in humans, the haplotype information
contains indicators to the individual’s susceptibility to diseases and expected responses to certain
classes of drugs [1]. Haplotype sequences are also used to infer recombination patterns and identify
genes under positive section [2]. In the case of agricultural crops such as the tuber family, the
haplotypes provide insight into developing disease and pest resistant variety of crops [3]. Thus, fast
and accurate algorithms for both polyploid and diploid haplotype reconstruction (or also known as
phasing) from high throughput sequencing reads are highly desirable.

Recent advancements in DNA sequencing technologies have dramatically improved affordability
and speed of sequencing; the most widely used are high-throughput sequencing devices (e.g., the
Illumina’s platforms). Information provided by such platforms typically comes in form of paired-
end reads, each consisting of two short contiguous samples of the chromosome (separated by a
few hundred bases). Typical reference-guided data processing pipeline starts by determining the
relative ordering of the reads via mapping them to a reference genome; this step is followed by the
detection of variant positions and SNP calling. To perform haplotype assembly, existing methods
typically retain only the reads that cover variant positions; parts of the retained reads that cover
homozygous sites are also discarded. Then the remaining information needs to be used to identify
K distinct haplotype sequences S1, · · · , SK , of same length. From the previous discussion, it is clear
that there is no position in these K strings where all the alleles are identical (such a position would
be homozygous and therefore discarded in the pre-processing step). While the relative positions of
reads are revealed by mapping them onto a reference, their origin remains unknown, i.e., it is not
known which among the K chromosomes a given read samples. In the absence of sequencing errors,
grouping reads according to their origin is rather straightforward and based on the disagreement re-
garding the allele information that the reads provide for each variant site. Unfortunately, however,
sequencing is erroneous with state-of-the-art sequencing platforms achieving sequencing errors in
the range of 10−3 − 10−2. In the presence of errors, it is no longer obvious how to decide whether
a read originates from a particular haplotype; to this end, one needs to rely on a computational
framework for haplotype assembly – the central focus of the present paper.

Existing work formulates haplotype assembly as a combinatorial optimization problem where one
seeks to reconstruct the haplotype sequence by judiciously making as few modifications of the
data as possible in order to remove read membership ambiguities arising due to sequencing errors.
This has led to optimization criteria such as minimal fragment removal, minimum SNP removal
[4], maximum fragments cut [5] and minimum error correction (MEC) [6]. Motivated by the
observation that the MEC score optimization is NP-hard [4, 7], a considerable amount of recent
work studied relaxations of the underlying combinatorial optimization problem [8, 9, 10, 7]. In
a pioneering work, [11] proposed a greedy algorithm aimed at assembling most-likely haplotype
sequences given the observations. This line of thought of using Bayesian methods to reconstruct
the most likely haplotype sequence was carried out further in [12] and [13] using MCMC and
Gibbs sampling, respectively. However, these methods are usually slow as the associated Markov
chains have large mixing times, thereby making their practical applicability limited. HapCUT [14]
makes a connection between haplotype assembly and graph-clustering, and solves it by identifying
a maximum cut in an appropriately constructed graph. This method was shown to be superior to
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[11] and is widely used in benchmarking. HapCUT algorithm was then significantly outperformed
by HapCompass [15]. However, apart from HapCompass, all of these methods are restricted to the
diploid case. To address both the diploid and polyploid scenarios, SDhaP [16] relaxes the MEC
minimization problem to a convex optimization program and solves it efficiently by exploiting the
underlying data structure. More recently, AltHap [17] casts haplotype assembly as a low-rank tensor
factorization problem and solves it via fast alternating optimization heuristics. The connection to
matrix factorization was previously exploited in [18] and [19], but those methods were incapable of
handling polyploids or polyallelic assembly problem. Prior to the current paper, AltHap [17] is the
only algorithm capable of solving the assembly problem in the polyploids/polyallelic scenario.

Main Contributions

In this paper, we propose a novel formulation of haplotype assembly as a spatial graph clustering
problem. This formulation is based on spatial point process representation of paired-end reads; in
particular, we argue that assigning to each paired-end read spatial coordinates corresponding to
the starting indices of the reads in the pair represents valuable augmentation of the information.
Equipped with such a representation of the data, we construct a graph whose nodes represent
the reads, and place a weighted edge between two reads if they overlap in at least one position.
The edge weights are formed using the scoring function adopted from [16]; this weighting mecha-
nism ensures that if two reads belong to the same haplotype, then the edge connecting them will
likely be assigned a large positive weight, while if they belong to different haplotypes, then the
edge between them will likely be assigned a large negative weight. We then cast the haplotype
assembly problem as an Euclidean community detection problem [20], where the community label
of a node (i.e., a read) indicates the haplotype it comes from. We find in our experiments that
such a ‘spatial’ embedding of the problem greatly improves both the accuracy and the run time
complexity of polyploid phasing. The improvement in accuracy stems from the fact that our al-
gorithm naturally enforces a regularizing constraint that the underlying sampling process is in a
sense uniformly distributed in space. In other words, we know that in every ‘location’ of space,
the total number reads covering the given SNP location belonging to the various haplotypes are
identical. Having a spatial representation of the data allows one to incorporate this prior knowledge
about the sampling process and leads to dramatically higher accuracy, especially in the polyploid
case. The spatial representation is also crucial in reducing run times, as this exposes the problem’s
inherent ‘locality’ condition in space. More precisely, observe that if two reads are ‘far away’ in this
embedding (i.e, they do not overlap), there will be no edge connecting them in the corresponding
graph. This allows us to naturally ‘decompose’ the haplotype assembly problem using a divide-
and-conquer paradigm, where we can perform assembly on smaller spatially localized sets of reads
– which is computationally very efficient – and then perform a synchronization step to combine the
local haplotype assemblies into a single global solution. This algorithmic framework is robust to
inaccuracies in the individual local instances of phasing since the synchronization or the combining
step has a natural error-correction mechanism due to a single location being phased in multiple
local instances. Thus, we can employ faster but less accurate local phasing methods while still
achieving high global accuracy and good run-time performance. Further technical aspects of these
ideas are elaborated in Section 3.
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Figure 1: A pictorial description of a paired end read on an example with m = 9.

Reads

1 2 3 4 5 6 7 8 9

Sites

Figure 2: A pictorial description of a connected block of sites. There are 4 reads in the figure
corresponding to the green bars. They set of sites covered by them are {1, 2}, {2, 3}, {3, 4, 5, 6}
and {6, 7, 8, 9} respectively. The bottom figure is the graph Q on m = 9 vertices constructed by
the 4 reads.

2 Problem Formulation

Setup and Notation

Let m and n denote the length of the haplotype sequences and the total number of paired-end read
measurements, respectively. Let k denote the ploidy, i.e., the number of haplotype sequences and a
be the cardinality of the alphabet set. If the variant sites are polyallelic, then a = 4 (i.e., all 4 alleles
A,C,G, T are possible); in diploid and polyploid bi-allelic case, a = 2. The haplotype sequences
are denoted by sl[i], where for each i ∈ {1, · · · ,m} and l ∈ {1, · · · , k}, we have sl[i] ∈ {1, · · · , a}.
As an example, in the poly-allelic case, we have sl[i] ∈ {A,C,G,T}. In the rest of the paper, we
refer to the haplotype positions {1, · · · ,m} as sites.

Each read ru, u ∈ {1, · · · , n}, is formed by first sampling a haplotype indexed by vu ∈ {1, · · · , k}
and then sampling a sequence of alleles {s̃(u)[i]}i∈Iu at sites Iu ⊂ {1, · · · ,m}, where for each i ∈ Iu,
s̃(u)[i] ∈ {A,C,G, T} is a “noisy” (due to sequencing errors) version of the underlying ground truth
svu [i]. For each measurement u ∈ {1, · · · , n}, we observe the set of positions Iu and the noisy values
{s̃(u)[i]}i∈Iu but not the index vu of the haplotype from which the read originates. Thus, using the
above notation, the total dataset is denoted as ({s̃(u)[i]}i∈Iu)u∈{1,··· ,n}. The goal of assembly is to
infer origins of the reads and recover haplotype sequences.
In this paper, we consider the case where the data is in form of paired-ended reads. Formally, this
implies that each measurement u ∈ {1, · · · , n} is such that the set of sites covered by read u has
two contiguous blocks. More precisely, we assume that each read u ∈ {1, · · · , n} is such that there

exists i
(u)
1 , j

(u)
1 , i

(u)
2 , j

(u)
2 ∈ {1, · · · ,m}, such that the set of sites covered by u, which was denoted

by Iu satisfies, Iu = {i(u)1 , i
(u)
1 + 1, · · · , i(u)1 + j

(u)
1 } ∪ {i

(u)
2 , i

(u)
2 + 1, · · · , i(u)2 + j

(u)
2 }. See Figure 1 for

an illustration.
We further assume that the set of m sites and n reads forms a single connected component. In
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particular, if we draw a graph Q on the vertex set {1, · · · ,m}, where for any two a, b ∈ {1, · · · , n},
there is an edge in Q if and only if there is a read u ∈ {1, · · · , n}, that covers both sites a and
b. We say that our data set consisting of the m sites and n reads is connected, if the graph Q
has a single connected component. Refer to Figure 2 for an illustration. Notice that since the
problem definition is agnostic to how we label the strings from {1, · · · , k}, any haplotype phasing
algorithm can only hope to recover the k strings up to a permutation of the string label (which
takes values in {1, · · · , k}). For two disjoint blocks of a haplotype that are not bridged by a read,
there is no way to ascertain how to phase fragments of the k haplotypes locally recovered inside the
blocks. For this reason (and without the loss of generality of the proposed assembly framework),
we assume that the set of haplotypes form a contiguous block of reads. If this were not the case, we
could pre-process the reads and split the problem into many smaller instances, where each instance
consists of a single contiguous haplotype block that needs to be assembled independently of other
blocks.

Recovery Goals and Performance Metrics

In this subsection, we formalize the main performance metrics used to benchmark haplotype as-
sembly algorithms, namely the Correct Phasing Rate (CPR) and the Minimum Error Correction
(MEC) score (see eg. ([21], [22], [23])). The CPR measures the discrepancy between the recon-
structed haplotypes ŝ1, · · · , ŝk and the ground truth s1, · · · , sk,

CPR =
1

m

m∑
i=1

max
π∈Sk

k∏
l=1

1ŝl[i]=sπ(l)[i], (1)

where Sk is the set of all permutations of {1, · · · , k}. Note that this is a more demanding notion
of recovery compared to that used in [17] and [24]; the metric used there, so-called Reconstruction
Rate, we for convenience denote by M-CPR (abbreviating “Modified CPR”). This metric is defined
as

M-CPR = max
π∈Sk

1

mk

m∑
i=1

k∑
l=1

1ŝl[i]=sπ(l)[i]. (2)

In the case of assembly of diploid haplotypes (i.e., k = 2), CPR and M-CPR are identical. However,
in the polyploid case where the size of the alphabet is generally 4, it holds that CPR ≤ M-CPR
since for all sets X1, · · · , Xk,

∏k
j=1 1Xj ≤

∑k
j=1 1Xj . We adopt CPR in equation (1) since it reflects

the fraction of sites where the haplotype phasing algorithm correctly recovers all the haplotypes.
Unfortunately, the design of algorithms for direct minimization of this objective is infeasible since
the ground truth is unknown. A commonly used proxy metric in practice is the MEC which can
be computed directly from the observed data and the reconstructed output. The MEC score is
defined as

MEC =
n∑
u=1

min
l∈{1,··· ,k}

m∑
i=1

1Read u covers site i1ŝ(u)[i] 6=sl[j].

A number of existing haplotype assembly schemes such as [17], [14], attempt to directly minimize
the MEC score by solving relaxations of the underlying combinatorial optimization problem that is
known to be NP-hard [4], [7]. Contrary to this common approach, in this paper we do not attempt
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to directly minimize the MEC but rather leverage inherent structural properties of the data and
the fact that the noise in measurements is introduced randomly, rather than by an adversarial
source, to design a randomized assembly algorithm. Specifically, we rely on the above observations
to provide a solution to haplotype assembly by posing it as a clustering problem on a random graph.

The key parameters that impact the performance of assembly are coverage, error rate and effective

read length. Formally, effective read-length R is defined to be the average of j
(l)
1 and j

(l)
2 , i.e.,

R =
1

2n

n∑
u=1

(j
(u)
1 + j

(u)
2 ).

We define the coverage C as the average number of reads that cover a single base in a haplotype, i.e.,
C = 2nR

km . Since there are n reads, each covering on average 2R haplotype alleles, the total average
number of bases being read is 2nr. The error-rate p is the average error rate of the data acquisition
process, i.e., the fraction of alleles incorrectly represented by the reads; this rate is aggregate of
the sequencing and SNP calling errors. We adopt the standard practice of characterizing and
benchmarking the performance of haplotype assembly algorithms using either the achieved MEC
in practical settings where the ground truth is unknown, and the CPR in simulation studies where
the ground truth is known. We will characterize the performance of our algorithm in settings with
varied ploidy, alphabet size, coverage, read-lengths and error-rates.

3 The Haplotype Assembly Algorithm

The algorithm we propose is based on identifying a simple connection between the aforementioned
haplotype reconstruction problem and Euclidean community detection. Although such a connection
was previously noted in the special case of single-ended reads and the diploid haplotype phasing
problem [25], no prior work explored this connection in the case of paired-end reads and phasing
polyploids. For the first time, we provide a unified framework based on Euclidean community
detection (e.g., [20],[26]) for both diploid and polyploid haplotype phasing problems.

Pre-Processing the Data

In order to invoke a connection to spatial community detection, we pre-process the n paired-end
reads into a graph G with n nodes, where each node represents a paired-end read. This pre-
processing has two steps - (i) Constructing weights between pairs of nodes (reads), (ii) Placing
labels on the nodes.

1. Weights between nodes - For any two reads u, v ∈ [n] with u 6= v, denote the intersection of
sites at which the two measurements occur by Iu ∩ Iv := {l1, · · · , lq}, where q = 0 implies empty
set. More precisely, each li, for i ∈ {1, · · · , q}, is a position along the haplotype covered by both u
and v. If q = 0, reads u and v cover disjoint set of sites; in this case, there is no edge between u
and v in the graph G. If on the other hand q > 0, then we place an edge between them and assign
it weight wuv given by

wuv :=
1

q

q∑
h=1

(1s̃(u)[lh]=s̃(v)[lh] − 1s̃(u)[lh]6=s̃(v)[lh]). (3)
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<latexit sha1_base64="zpdWA0nH7rLmdr/lTaEYWr5wpEw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBD0GvXiMYB6YrGF20kmGzM4uM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGtzO/OUaleSQfzCRGP6QDyfucUWOlR971ntLy+HxKusWSW3HnIKvEy0gJMtS6xa9OL2JJiNIwQbVue25s/JQqw5nAaaGTaIwpG9EBti2VNETtp/OLp+TMKj3Sj5Qtachc/T2R0lDrSRjYzpCaoV72ZuJ/Xjsx/Ws/5TJODEq2WNRPBDERmb1PelwhM2JiCWWK21sJG1JFmbEhFWwI3vLLq6RxUfHcind/WareZHHk4QROoQweXEEV7qAGdWAg4Rle4c3Rzovz7nwsWnNONnMMf+B8/gBqQ5AU</latexit><latexit sha1_base64="zpdWA0nH7rLmdr/lTaEYWr5wpEw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBD0GvXiMYB6YrGF20kmGzM4uM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGtzO/OUaleSQfzCRGP6QDyfucUWOlR971ntLy+HxKusWSW3HnIKvEy0gJMtS6xa9OL2JJiNIwQbVue25s/JQqw5nAaaGTaIwpG9EBti2VNETtp/OLp+TMKj3Sj5Qtachc/T2R0lDrSRjYzpCaoV72ZuJ/Xjsx/Ws/5TJODEq2WNRPBDERmb1PelwhM2JiCWWK21sJG1JFmbEhFWwI3vLLq6RxUfHcind/WareZHHk4QROoQweXEEV7qAGdWAg4Rle4c3Rzovz7nwsWnNONnMMf+B8/gBqQ5AU</latexit><latexit sha1_base64="zpdWA0nH7rLmdr/lTaEYWr5wpEw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBD0GvXiMYB6YrGF20kmGzM4uM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGtzO/OUaleSQfzCRGP6QDyfucUWOlR971ntLy+HxKusWSW3HnIKvEy0gJMtS6xa9OL2JJiNIwQbVue25s/JQqw5nAaaGTaIwpG9EBti2VNETtp/OLp+TMKj3Sj5Qtachc/T2R0lDrSRjYzpCaoV72ZuJ/Xjsx/Ws/5TJODEq2WNRPBDERmb1PelwhM2JiCWWK21sJG1JFmbEhFWwI3vLLq6RxUfHcind/WareZHHk4QROoQweXEEV7qAGdWAg4Rle4c3Rzovz7nwsWnNONnMMf+B8/gBqQ5AU</latexit><latexit sha1_base64="zpdWA0nH7rLmdr/lTaEYWr5wpEw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBD0GvXiMYB6YrGF20kmGzM4uM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGtzO/OUaleSQfzCRGP6QDyfucUWOlR971ntLy+HxKusWSW3HnIKvEy0gJMtS6xa9OL2JJiNIwQbVue25s/JQqw5nAaaGTaIwpG9EBti2VNETtp/OLp+TMKj3Sj5Qtachc/T2R0lDrSRjYzpCaoV72ZuJ/Xjsx/Ws/5TJODEq2WNRPBDERmb1PelwhM2JiCWWK21sJG1JFmbEhFWwI3vLLq6RxUfHcind/WareZHHk4QROoQweXEEV7qAGdWAg4Rle4c3Rzovz7nwsWnNONnMMf+B8/gBqQ5AU</latexit>

i
(v)
1

<latexit sha1_base64="zpdWA0nH7rLmdr/lTaEYWr5wpEw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBD0GvXiMYB6YrGF20kmGzM4uM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGtzO/OUaleSQfzCRGP6QDyfucUWOlR971ntLy+HxKusWSW3HnIKvEy0gJMtS6xa9OL2JJiNIwQbVue25s/JQqw5nAaaGTaIwpG9EBti2VNETtp/OLp+TMKj3Sj5Qtachc/T2R0lDrSRjYzpCaoV72ZuJ/Xjsx/Ws/5TJODEq2WNRPBDERmb1PelwhM2JiCWWK21sJG1JFmbEhFWwI3vLLq6RxUfHcind/WareZHHk4QROoQweXEEV7qAGdWAg4Rle4c3Rzovz7nwsWnNONnMMf+B8/gBqQ5AU</latexit><latexit sha1_base64="zpdWA0nH7rLmdr/lTaEYWr5wpEw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBD0GvXiMYB6YrGF20kmGzM4uM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGtzO/OUaleSQfzCRGP6QDyfucUWOlR971ntLy+HxKusWSW3HnIKvEy0gJMtS6xa9OL2JJiNIwQbVue25s/JQqw5nAaaGTaIwpG9EBti2VNETtp/OLp+TMKj3Sj5Qtachc/T2R0lDrSRjYzpCaoV72ZuJ/Xjsx/Ws/5TJODEq2WNRPBDERmb1PelwhM2JiCWWK21sJG1JFmbEhFWwI3vLLq6RxUfHcind/WareZHHk4QROoQweXEEV7qAGdWAg4Rle4c3Rzovz7nwsWnNONnMMf+B8/gBqQ5AU</latexit><latexit sha1_base64="zpdWA0nH7rLmdr/lTaEYWr5wpEw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBD0GvXiMYB6YrGF20kmGzM4uM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGtzO/OUaleSQfzCRGP6QDyfucUWOlR971ntLy+HxKusWSW3HnIKvEy0gJMtS6xa9OL2JJiNIwQbVue25s/JQqw5nAaaGTaIwpG9EBti2VNETtp/OLp+TMKj3Sj5Qtachc/T2R0lDrSRjYzpCaoV72ZuJ/Xjsx/Ws/5TJODEq2WNRPBDERmb1PelwhM2JiCWWK21sJG1JFmbEhFWwI3vLLq6RxUfHcind/WareZHHk4QROoQweXEEV7qAGdWAg4Rle4c3Rzovz7nwsWnNONnMMf+B8/gBqQ5AU</latexit><latexit sha1_base64="zpdWA0nH7rLmdr/lTaEYWr5wpEw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXBD0GvXiMYB6YrGF20kmGzM4uM7OBsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGtzO/OUaleSQfzCRGP6QDyfucUWOlR971ntLy+HxKusWSW3HnIKvEy0gJMtS6xa9OL2JJiNIwQbVue25s/JQqw5nAaaGTaIwpG9EBti2VNETtp/OLp+TMKj3Sj5Qtachc/T2R0lDrSRjYzpCaoV72ZuJ/Xjsx/Ws/5TJODEq2WNRPBDERmb1PelwhM2JiCWWK21sJG1JFmbEhFWwI3vLLq6RxUfHcind/WareZHHk4QROoQweXEEV7qAGdWAg4Rle4c3Rzovz7nwsWnNONnMMf+B8/gBqQ5AU</latexit>

i
(u)
1

<latexit sha1_base64="cn/V+qkpFt1uRuH/QOv7dnn1Nfs=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilB9HzHrNKejYhvVLZrbozkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2YXT8ipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPIzoZIUuWLzRWEqCcZk+j7pC80ZyrEllGlhbyVsSDVlaEMq2hC8xZeXSfO86rlV7+6iXLvO4yjAMZxABTy4hBrcQh0awEDBM7zCm2OcF+fd+Zi3rjj5zBH8gfP5A2i8kBM=</latexit><latexit sha1_base64="cn/V+qkpFt1uRuH/QOv7dnn1Nfs=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilB9HzHrNKejYhvVLZrbozkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2YXT8ipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPIzoZIUuWLzRWEqCcZk+j7pC80ZyrEllGlhbyVsSDVlaEMq2hC8xZeXSfO86rlV7+6iXLvO4yjAMZxABTy4hBrcQh0awEDBM7zCm2OcF+fd+Zi3rjj5zBH8gfP5A2i8kBM=</latexit><latexit sha1_base64="cn/V+qkpFt1uRuH/QOv7dnn1Nfs=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilB9HzHrNKejYhvVLZrbozkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2YXT8ipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPIzoZIUuWLzRWEqCcZk+j7pC80ZyrEllGlhbyVsSDVlaEMq2hC8xZeXSfO86rlV7+6iXLvO4yjAMZxABTy4hBrcQh0awEDBM7zCm2OcF+fd+Zi3rjj5zBH8gfP5A2i8kBM=</latexit><latexit sha1_base64="cn/V+qkpFt1uRuH/QOv7dnn1Nfs=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilB9HzHrNKejYhvVLZrbozkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2YXT8ipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPIzoZIUuWLzRWEqCcZk+j7pC80ZyrEllGlhbyVsSDVlaEMq2hC8xZeXSfO86rlV7+6iXLvO4yjAMZxABTy4hBrcQh0awEDBM7zCm2OcF+fd+Zi3rjj5zBH8gfP5A2i8kBM=</latexit>

i
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<latexit sha1_base64="bfvgt23wdUPSyRnC8ZH7Knp+58A=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJewGQY9BLx4jmAcma5idTJIhs7PLTG8gLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+O2vrG5tb27md/O7e/sFh4ei4YaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3c785phrIyL1gJOY+yEdKNEXjKKVHkW38pSWxhdT0i0U3bI7B1klXkaKkKHWLXx1ehFLQq6QSWpM23Nj9FOqUTDJp/lOYnhM2YgOeNtSRUNu/HR+8ZScW6VH+pG2pZDM1d8TKQ2NmYSB7QwpDs2yNxP/89oJ9q/9VKg4Qa7YYlE/kQQjMnuf9ITmDOXEEsq0sLcSNqSaMrQh5W0I3vLLq6RRKXtu2bu/LFZvsjhycApnUAIPrqAKd1CDOjBQ8Ayv8OYY58V5dz4WrWtONnMCf+B8/gBrzpAV</latexit><latexit sha1_base64="bfvgt23wdUPSyRnC8ZH7Knp+58A=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJewGQY9BLx4jmAcma5idTJIhs7PLTG8gLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+O2vrG5tb27md/O7e/sFh4ei4YaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3c785phrIyL1gJOY+yEdKNEXjKKVHkW38pSWxhdT0i0U3bI7B1klXkaKkKHWLXx1ehFLQq6QSWpM23Nj9FOqUTDJp/lOYnhM2YgOeNtSRUNu/HR+8ZScW6VH+pG2pZDM1d8TKQ2NmYSB7QwpDs2yNxP/89oJ9q/9VKg4Qa7YYlE/kQQjMnuf9ITmDOXEEsq0sLcSNqSaMrQh5W0I3vLLq6RRKXtu2bu/LFZvsjhycApnUAIPrqAKd1CDOjBQ8Ayv8OYY58V5dz4WrWtONnMCf+B8/gBrzpAV</latexit><latexit sha1_base64="bfvgt23wdUPSyRnC8ZH7Knp+58A=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJewGQY9BLx4jmAcma5idTJIhs7PLTG8gLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+O2vrG5tb27md/O7e/sFh4ei4YaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3c785phrIyL1gJOY+yEdKNEXjKKVHkW38pSWxhdT0i0U3bI7B1klXkaKkKHWLXx1ehFLQq6QSWpM23Nj9FOqUTDJp/lOYnhM2YgOeNtSRUNu/HR+8ZScW6VH+pG2pZDM1d8TKQ2NmYSB7QwpDs2yNxP/89oJ9q/9VKg4Qa7YYlE/kQQjMnuf9ITmDOXEEsq0sLcSNqSaMrQh5W0I3vLLq6RRKXtu2bu/LFZvsjhycApnUAIPrqAKd1CDOjBQ8Ayv8OYY58V5dz4WrWtONnMCf+B8/gBrzpAV</latexit><latexit sha1_base64="bfvgt23wdUPSyRnC8ZH7Knp+58A=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJewGQY9BLx4jmAcma5idTJIhs7PLTG8gLPkLLx4U8erfePNvnCR70MSChqKqm+6uIJbCoOt+O2vrG5tb27md/O7e/sFh4ei4YaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3c785phrIyL1gJOY+yEdKNEXjKKVHkW38pSWxhdT0i0U3bI7B1klXkaKkKHWLXx1ehFLQq6QSWpM23Nj9FOqUTDJp/lOYnhM2YgOeNtSRUNu/HR+8ZScW6VH+pG2pZDM1d8TKQ2NmYSB7QwpDs2yNxP/89oJ9q/9VKg4Qa7YYlE/kQQjMnuf9ITmDOXEEsq0sLcSNqSaMrQh5W0I3vLLq6RRKXtu2bu/LFZvsjhycApnUAIPrqAKd1CDOjBQ8Ayv8OYY58V5dz4WrWtONnMCf+B8/gBrzpAV</latexit>
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<latexit sha1_base64="B9cN/MdbF0a2Mx9Iabz4p5GB4aQ=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CHoMevEYwTwwWcPsZJIMmZ1dZnqFsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFR00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpn5rSeujYjUPU5i7od0qMRAMIpWehC96mNaTs6npFcsuRV3DrJKvIyUIEO9V/zq9iOWhFwhk9SYjufG6KdUo2CSTwvdxPCYsjEd8o6liobc+On84ik5s0qfDCJtSyGZq78nUhoaMwkD2xlSHJllbyb+53USHFz5qVBxglyxxaJBIglGZPY+6QvNGcqJJZRpYW8lbEQ1ZWhDKtgQvOWXV0mzWvHcind3UapdZ3Hk4QROoQweXEINbqEODWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gBqR5AU</latexit><latexit sha1_base64="B9cN/MdbF0a2Mx9Iabz4p5GB4aQ=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CHoMevEYwTwwWcPsZJIMmZ1dZnqFsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFR00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpn5rSeujYjUPU5i7od0qMRAMIpWehC96mNaTs6npFcsuRV3DrJKvIyUIEO9V/zq9iOWhFwhk9SYjufG6KdUo2CSTwvdxPCYsjEd8o6liobc+On84ik5s0qfDCJtSyGZq78nUhoaMwkD2xlSHJllbyb+53USHFz5qVBxglyxxaJBIglGZPY+6QvNGcqJJZRpYW8lbEQ1ZWhDKtgQvOWXV0mzWvHcind3UapdZ3Hk4QROoQweXEINbqEODWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gBqR5AU</latexit><latexit sha1_base64="B9cN/MdbF0a2Mx9Iabz4p5GB4aQ=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CHoMevEYwTwwWcPsZJIMmZ1dZnqFsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFR00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpn5rSeujYjUPU5i7od0qMRAMIpWehC96mNaTs6npFcsuRV3DrJKvIyUIEO9V/zq9iOWhFwhk9SYjufG6KdUo2CSTwvdxPCYsjEd8o6liobc+On84ik5s0qfDCJtSyGZq78nUhoaMwkD2xlSHJllbyb+53USHFz5qVBxglyxxaJBIglGZPY+6QvNGcqJJZRpYW8lbEQ1ZWhDKtgQvOWXV0mzWvHcind3UapdZ3Hk4QROoQweXEINbqEODWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gBqR5AU</latexit><latexit sha1_base64="B9cN/MdbF0a2Mx9Iabz4p5GB4aQ=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CHoMevEYwTwwWcPsZJIMmZ1dZnqFsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFR00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvpn5rSeujYjUPU5i7od0qMRAMIpWehC96mNaTs6npFcsuRV3DrJKvIyUIEO9V/zq9iOWhFwhk9SYjufG6KdUo2CSTwvdxPCYsjEd8o6liobc+On84ik5s0qfDCJtSyGZq78nUhoaMwkD2xlSHJllbyb+53USHFz5qVBxglyxxaJBIglGZPY+6QvNGcqJJZRpYW8lbEQ1ZWhDKtgQvOWXV0mzWvHcind3UapdZ3Hk4QROoQweXEINbqEODWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gBqR5AU</latexit>

wuv
<latexit sha1_base64="zW44W02VJzYd0MaGY3Ct85ahnJA=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48V7Ae0S8mm2TY2myxJtlKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx41jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7cxvjZk2XMkHO0lYEJOB5BGnxDqp+dTL0vG0V654VW8OvEr8nFQgR71X/ur2FU1jJi0VxJiO7yU2yIi2nAo2LXVTwxJCR2TAOo5KEjMTZPNrp/jMKX0cKe1KWjxXf09kJDZmEoeuMyZ2aJa9mfif10ltdB1kXCapZZIuFkWpwFbh2eu4zzWjVkwcIVRzdyumQ6IJtS6gkgvBX355lTQvqr5X9e8vK7WbPI4inMApnIMPV1CDO6hDAyg8wjO8whtS6AW9o49FawHlM8fwB+jzBxAwj28=</latexit><latexit sha1_base64="zW44W02VJzYd0MaGY3Ct85ahnJA=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48V7Ae0S8mm2TY2myxJtlKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx41jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7cxvjZk2XMkHO0lYEJOB5BGnxDqp+dTL0vG0V654VW8OvEr8nFQgR71X/ur2FU1jJi0VxJiO7yU2yIi2nAo2LXVTwxJCR2TAOo5KEjMTZPNrp/jMKX0cKe1KWjxXf09kJDZmEoeuMyZ2aJa9mfif10ltdB1kXCapZZIuFkWpwFbh2eu4zzWjVkwcIVRzdyumQ6IJtS6gkgvBX355lTQvqr5X9e8vK7WbPI4inMApnIMPV1CDO6hDAyg8wjO8whtS6AW9o49FawHlM8fwB+jzBxAwj28=</latexit><latexit sha1_base64="zW44W02VJzYd0MaGY3Ct85ahnJA=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48V7Ae0S8mm2TY2myxJtlKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx41jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7cxvjZk2XMkHO0lYEJOB5BGnxDqp+dTL0vG0V654VW8OvEr8nFQgR71X/ur2FU1jJi0VxJiO7yU2yIi2nAo2LXVTwxJCR2TAOo5KEjMTZPNrp/jMKX0cKe1KWjxXf09kJDZmEoeuMyZ2aJa9mfif10ltdB1kXCapZZIuFkWpwFbh2eu4zzWjVkwcIVRzdyumQ6IJtS6gkgvBX355lTQvqr5X9e8vK7WbPI4inMApnIMPV1CDO6hDAyg8wjO8whtS6AW9o49FawHlM8fwB+jzBxAwj28=</latexit><latexit sha1_base64="zW44W02VJzYd0MaGY3Ct85ahnJA=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48V7Ae0S8mm2TY2myxJtlKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx41jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7cxvjZk2XMkHO0lYEJOB5BGnxDqp+dTL0vG0V654VW8OvEr8nFQgR71X/ur2FU1jJi0VxJiO7yU2yIi2nAo2LXVTwxJCR2TAOo5KEjMTZPNrp/jMKX0cKe1KWjxXf09kJDZmEoeuMyZ2aJa9mfif10ltdB1kXCapZZIuFkWpwFbh2eu4zzWjVkwcIVRzdyumQ6IJtS6gkgvBX355lTQvqr5X9e8vK7WbPI4inMApnIMPV1CDO6hDAyg8wjO8whtS6AW9o49FawHlM8fwB+jzBxAwj28=</latexit>

m. . . . . .

Figure 3: An illustration of our pre-processing the set of reads into a spatial random graph. The
starting indices of the two contiguous blocks of a read forms its spatial coordinate and the weight
is computed using Equation 3. In this example, the shaded sites contribute to the weight wuv.

In words, the weight of an edge between any two overlapping reads u and v is the difference between
the number of positions (sites) where u and v agree and the number where they disagree, divided
by the total number of sites in common. Observe in the definition that the weights wuv ∈ [−1, 1]
for all u, v ∈ [n]. Such a weighting scheme ensures that if wuv is positive and large, then it is likely
that the reads u and v are generated from the same string, while if wuv is negative and large in
magnitude, then it is likely that the reads u and v are generated from different strings. This bias
in the weights wuv can be understood by examining the typical structure of the polyploid phasing
problem. Note that if the SNP positions were called accurately, i.e., all of the m haplotypes to be
phased were ‘true’, then it would hold that in any location i ∈ {1, · · · ,m}, not all strings s1, · · · , sk
have identical bases, i.e., the set of locations {i ∈ {1, · · · ,m} : s1[i] = · · · = sk[i]} = ∅. Since
sequencing errors are ‘typically’ small, it is thus the case that if two reads covering the same site
have different values, then it is likely that they come from different haplotypes.

2. Node Labels - To each node u ∈ [Nn] of the graph we assign two labels: (i) - a community
label Zu ∈ [k] and (ii) - a spatial label Xu ∈ [m]2. The community label of a node indicates origin
of the corresponding read (i.e., which haplotype the read samples), while the spatial label of a node

u ∈ [n] is (i
(u)
1 , i

(u)
2 ), i.e., the locations along the haplotype where the two contiguous substrings

of the paired-end read start. See Figure 3 for an illustration of the data pre-processing. This
definition of spatial labels assumes that the reads consist of precisely two contiguous substrings;
however, experimental data show that this may be violated due to various practicalities in base-
calling, read mapping and variant calling steps (e.g., due to omitting bases with confidence scores
below a threshold); consequently, in practice a read (more precisely, the parts of a read covering
heterogeneous variant positions that are being used in haplotype assembly) may consist of either a
single or more than 2 contiguous fragments. If a read is only a single contiguous string of alleles,
the spatial location of that read is placed on the diagonal in [n]2, i.e., the spatial label assigned to
the read is a pair of identical numbers (each being the starting position of the single read). If a
read happens to consist of more than 2 contiguous fragments, there are several possibilities when
it comes to assigning it a spatial label. For instance, we may split the read into multiple reads
such that each one has at most two contiguous fragments; alternatively, we may choose two of the
multiple starting contiguous points in a suitable fashion to form the spatial label. Further details
regarding assignment of spatial labels are discussed in Section 4.2.
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Summary of the Algorithmic Pipeline

Our algorithm takes the spatial graph G as input, and produces the reconstructed haplotypes. After
pre-processing the sequencing data, we may form the graph G and assign spatial labels (Xu)u∈[n] to
its nodes. However, the community labels (Zu)u∈[n] are unknown at this point. We defer a detailed
discussion of the computational complexity involved in the pre-processing needed to construct G
to the end of this section, where we show that one can exploit the structure in the data to reduce
complexity of this pre-processing step from the naive O(n2) to roughly O(n). Given the represen-
tation of the data by the graph G, and having assigned spatial labeling to its nodes, our algorithm
has two main components - (i) - a community detection on G to discover origin of each read and
thus effectively group the reads into k different clusters and (ii) - Subsequently, for all i ∈ [m] and
l ∈ [k], we estimate ŝl[i] by a simple majority rule as described in the sequel.

1. Euclidean Community Detection - This part of the algorithm is where we take as input the
graph G along with the spatial labels (Xu)u∈[n] and estimate for each u ∈ [n], a community label

Ẑu ∈ [k], denoting which of the k haplotype, a read is likely originating from. We summarize the
key steps in this task. The formal pseudo code is given in Algorithm 1.

1. We first tessellate the grid [n]2 into smaller overlapping boxes, denoted by (Bx,y)1≤x≤ñ,1≤y≤ñ.
Here ñ < n is a parameter which we choose and each Bx,y ⊂ [n]2. The tessellation is such
that each grid point u ∈ [n]2 belongs to multiple boxes Bx,y since the boxes overlap.

2. For each box Bx,y, let Hx,y denote the subgraph of G containing nodes whose spatial locations
lie in Bx,y. The nodes of Hx,y are all clustered independently into k communities.

3. The community estimates in different boxes are synchronized to obtain a global clustering
estimate from spatially-local clustering estimates. Since each grid point is present in multiple
boxes, a read gets many estimates for its community, each of which adds an ‘evidence’ to
the label of the node. This scheme has a natural ‘error-correcting’ mechanism, since it is less
likely for a node to be misclassified in the majority of the boxes it lies in, as opposed to any
one particular box.

2. Reduce by Majority - After estimating for each node (read), the likely haplotype from which
it originates (Ẑu)u∈[n], we reconstruct the haplotypes by a simple majority vote. For all j ∈ [k] and
i ∈ [m], we estimate ŝj [i] to be the majority among the 4 letters in the alphabet as indicated by
the reads that cover site i and are estimated to belong to string j in the above clustering step.

Intuition behind the Algorithm

Observe that for any two reads u and v that overlap, if the weight wuv is positive and large, then
they are likely from the same haplotype while if negative and large, they are likely from different
haplotypes. Consider a subset of reads such that the absolute value of the weights on the edges
that connect them in graph G are ‘large’. This subset of reads can readily be grouped into up to k
different clusters using standard techniques such as the spectral method. Such simple schemes will
be successful in this scenario since the ‘signal’ for clustering in the subgraph is high due to strong
interaction between the corresponding reads, i.e., the adjacency matrix of the subgraph is dense.
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Figure 4: An instance with three strings (haplotypes) of length 1000 where spectral clustering on
G fails. The coverage is 10, the effective read lengths r = 2 and R = 250. The error probability
p = 0.05. The figure on the left is the union of the three figures on the right. The three colored
plots are the spatial locations of the recovered communities by the spectral algorithm applied on G.
The density of the recovered blue estimates is 0.0995, while that of red is 0.33 and of green is 0.57.
The total overlap achieved by the spectral method is 0.1. Note that in the ground truth all three
colors are equal in intensity, which is not captured by the spectral method. However, our correctly
algorithm predicts approximately equal-sized communities, achieves an overlap of 0.98 and runs 4
times faster.

However, the entire set of reads does not posses the aforementioned property – in particular, it
has a large diameter (of order n). Thus, standard spectral methods applied to graph G are both
computationally impractical as well as statistically sub-optimal for recovery. The computational
impracticality is easy to observe; indeed, any clustering scheme will be super-linear in the num-
ber of nodes Nn, which renders them extremely slow on large problem instances that are typical
in practice. Furthermore, even the pre-processing of reads to construct graph G is of order N2

n,
which makes it computationally challenging in practical settings. The statistical sub-optimality
is more subtle and stems from the fluctuations in the density of reads in space; in many problem
instances, the density of reads varies across space due to randomness in the read generation process.
For instance, in Figure 4, we see an example where the density of reads captured by the spectral
algorithm is highly imbalanced due to the fluctuations of the nodes in space. However, in the
ground truth set, the statistical distribution of reads across space is the same for all communities.
Therefore, to improve performance, one would need an additional ‘constraint’ in the reconstruction
algorithm to enforce the fact that the spatial distribution of reads across all communities is the same.

Our strategy in this paper is to first partition the set of reads into subsets wherein the reads interact
strongly. Since the reads have spatial locality, we partition the set of reads into boxes as illustrated
in Figure 5. In each box, we consider the subgraph of G with nodes having spatial labels lying in
that box and then cluster this sub-graph independently of other subgraphs in other boxes. The
partition of space into boxes is fixed a priori and is data independent. The box size and how much
they overlap are hyper-parameters that can be tuned. In each box, we run a clustering algorithm
and then combine the estimates from different boxes to form a final global partitioning of the nodes
of G. The partitioning based on spatial locality automatically ensures that the spatial density
of the estimated communities are roughly identical. The intuition for this stems from the fact
that the reads will be roughly uniformly distributed within a box since the box is ‘small’ in size.
More importantly, by requiring that the boxes overlap, a single read will be present in multiple
boxes. This further boosts statistical accuracy of clustering by embedding natural error-correction
scheme; since a single read is processed multiple times, there are multiple instances of ‘evidence’
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for the community label of a node. From a computational complexity viewpoint, partitioning
the set of nodes and clustering smaller instances dramatically reduces run-time as a majority of
clustering algorithms are super-linear in the number of data points and hence reducing the sizes
of the graphs to be clustered has a significant beneficial impact. Therefore, our algorithm is both
computationally feasible on large instances and is statistically superior compared to standard graph
clustering algorithms directly applied on G.

3.1 Pseudo Code

Let us start by introducing the notation needed to formalize the algorithm. The algorithm has
hyper-parameters A,B, iter,M ∈ N and α ∈ [0, 1]. For x, y ∈ [d ñAe], we define Bx,y ⊂ [n]2 as
Bx,y := [Ax,min(Ax+B, ñ)]× [Ay,min(Ay +B, ñ)], the box indexed by (x, y). Thus, the param-
eters A and B dictate how large a box is and how many boxes cover a read. In the course of the
algorithm, we maintain a dictionary of lists C, where for each node u ∈ [Nn], C[u] denotes the list
of community estimates for node u. Each node has more than one estimate as it belongs to more
than one box. The estimates from clustering in each box are added as ‘evidence’ of the community
estimate for the nodes in the box. Having multiple estimates for a node helps in combating clus-
tering errors in certain boxes.

Main Routine - We now describe the algorithm in detail. The first step consists of partitioning the
space [n]2 into multiple overlapping boxes as shown in Figure 5. Recall that the hyper-parameters
A and B allow one to tune both the size of a box and the number of boxes that will cover a given
location of [n]2. In each box indexed by (x, y) for x, y ∈ [d ñAe], we identify the nodes of G having
their spatial label in that box; let us denote the collection of such nodes by Hx,y. If the number of
nodes in Hx,y is small (e.g., smaller than a certain hyper-parameter M), then we do not attempt to
cluster these nodes. We need to set such a minimum size of Hx,y or the output of clustering may
turn out to be noisy and non-informative. In addition, if more than an α < 1 fraction of nodes in
Hx,y have at least one community estimate, then again we do not cluster Hx,y. The reason for doing
so is to decrease the running time by ensuring we only perform the clustering step when there are
sufficiently many new unexplored nodes. In each remaining box (x, y) (i.e., each box with at least
M nodes where at most an α fraction of them have prior estimates) we apply a fast and simple
local clustering algorithm. In particular, we generate an approximate clustering of the nodes in
Hx,y by directly running a standard k-means algorithm [27] on the adjacency matrix of Hx,y. We
then iteratively improve upon this initial guess by reassigning each node to the most likely cluster
while keeping the assignment of other nodes fixed. This iterative update rule is reminiscent of the
class of Expectation Maximization algorithms, although our method is fast and non-parametric.
We run the iterative clean-up procedure for iter number of iterations. Once the nodes of Hx,y

are clustered, we append the result to the dictionary of lists C after appropriately synchronizing
the community estimates of each node. Once we have iterated over all boxes, we assign a single
community estimate to each node based on the majority in the list of estimates in C. The algorithm
is formalized as the following pseudo-code.

Local Clustering Step - This step is described in Algorithm 2. We follow a two step-procedure.
In the first step, we get an approximate clustering of the graph H by applying the standard k-
means algorithm on the adjacency matrix H. We then one-hot encode this clustering result. One
hot encoding is one where for each read we associate a k×1 vector in which all entries re 0 except for
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Figure 5: This is an example with ñ = 7. The parameters A = 1 and B = 3. The red and green
boxes are examples of Bx,y.

Algorithm 1 Main Routine

1: procedure Main(G, k, (Xi)i∈[1,Nn], A,B, iter,M) . A,B, iter,M, α are hyper-parameters
2: for i ∈ {1, · · · , n} do . For every node(read)
3: C[i]← [] . Initialize to empty
4: end for
5: for 1 ≤ x ≤

[
d nAe

]
do

6: for 1 ≤ y ≤
[
d nAe

]
do

7: Bx,y ← [Ax,min(Ax+B,n)]× [Ay,min(Ay +B,n)]
8: Hx,y ← Subgraph of G with spatial labels in Bx,y

9: f ← |{l∈Hx,y :|C[l]|>0|
|Hx,y | . Fraction of nodes with a community estimate

10: if |Hx,y| ≥M AND f ≥ 1− α then
11: e ← LOCAL-CLUSTER(Hx,y, k, iter)
12: C ←SYNCHRONIZE(C, e)
13: end if
14: end for
15: end for
16: return REDUCE-BY-MAJORITY(C)
17: end procedure

a single entry corresponding to the estimated community label of that read to be 1. More formally,
if r denotes the number of nodes of H, then the one-hot encoding result is a matrix e0 of size r×k.
Each entry of e0 is either 0 or 1; the entry in the ith row and jth column being 1 implies that the
ith node is classified as belonging to community j. Thus, each row of e0 contains exactly one 1
while the rest of the entries are all 0. We then run a ‘clean-up’ procedure by iteratively updating
the estimate as follows.

et+1 = T (Het). (4)

The function T is applied row-wise; for matrix A, it sets the ith row and jth column of T (A) to 1
if j = arg maxA[i], else the ith row and jth column of T (A) is set to 0. If a row has more than one
column where the maximum is attained, the first column where the maximum occurs is assigned
value 1 while the other columns are assigned value 0. Hence the dimensions of A and T (A) are the
same. Furthermore, for any matrix A, the matrix T (A) is such that its entries are either 0 or 1,
with each row having exactly one entry valued 1.

The iterative update is based on the following intuition. Let the clustering be encoded by matrix
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Algorithm 2 Small Graph Clustering

1: procedure Local-Cluster(H, k, iter)
2: ẽ := k-means-cluster(H, k) . k-means Algorithm of [27]
3: e0 = One-Hot-Encoding(ẽ).
4: for 1 ≤ i ≤ iter do
5: ei = arg maxHei−1 . row wise argmax
6: end for
7: return eiter.
8: end procedure

et for some t ∈ N, and consider a tagged node u ∈ [n]. The new updated value of the community
label of node u is then the ‘most-likely’ label given the estimates of the community labels of the
rest of the nodes. More precisely, the ‘weight’ that a node u is in a community l ∈ [k] is the sum
of the weights along the edges connecting u to v ∈ [n] in G such that the estimate of node v is l.
The new community label of node u is the one having the largest weight. By performing this op-
eration simultaneously for all nodes, one obtains the representation in Equation (4). The intuition
for reassigning the node to the community with the maximum weight stems from the observation
that if a weight along an edge is positive and large, then it is likely that the end nodes of the
edge share the origin, i.e., the corresponding reads sample the same haplotype. Likewise, if the
weight along an edge is negative and large, then it is likely that the end nodes represent reads that
sample different haplotypes. Therefore, for the iterative update to perform well, the initial estimate
e0 must be ‘good enough’; we achieve this by applying the k-means clustering algorithm on the
adjacency matrix H. In principle, one can obtain somewhat better initial guess for e0 by applying
the k-means algorithm to the eigenvectors of H, but the marginal gains in statistical accuracy does
not warrant the enormous increase in computation needed to perform such a spectral clustering.

The clean-up method, at first glance, seems to bear similarities to other dynamical algorithms such
as expectation maximization, Belief Propagation (BP) and tensor factorization based methods of
[17]. Unlike BP, however, we do not iterate the beliefs or probabilities of a node belonging to vari-
ous communities; instead, we make a hard assignment at each update step. While for standard BP
algorithms it is desirable that a graph is tree-structured, our graph contains a lot of triangles and
loops due to the spatial embeddings. Therefore, it would be insufficient to keep track of the node
marginals – instead, BP would need the entire joint distribution which is not tractable. Despite
the undesirable properties of G, benchmarking results demonstrate that our algorithm performs
community detection on the graph very well.

Synchronization Step - The main routine in Algorithm 1 considers the boxes sequentially and
performs local clustering steps. Once the local clustering is performed, a key component is to
synchronize the estimates of the current box with the estimates of the boxes that are already clus-
tered. The synchronization is essential since the problem is a permutation invariant to the labels.
Formally, the statistical distribution of the data remains unchanged if the true underlying labels of
the [k] strings are permuted. Hence, the best hope for any recovery algorithm is to reconstruct the
k strings upto a permutation of labels. Thus, if any clustering algorithm is run on two different
subsets of nodes, the corresponding haplotype estimates need to be synchronized to produce a
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Algorithm 3 Synchronization Step

1: procedure Synchronize(C, e)

2: Ŵ ← 0
3: π̂ ← id . The identity permutation
4: for All permutations π of [k] do
5: local-weight ← 0
6: for All nodes in e do
7: Wπ ←

∑
i∈Nx,y 1C[i] 6=empty

∑
j∈C[i] 1π(σ[i])=C[i][j]∑

j∈C[i] 1

8: end for
9: if Wπ > Ŵ then

10: Ŵ ←Wπ

11: π̂ ← π.
12: end if
13: end for
14: for nodes in e do
15: Append π̂(e[nodes]) to C[nodes].
16: end for
17: return C.
18: end procedure

clustering of the nodes in the union of the sets. We perform this clustering in line 8 of the main
routine Algorithm 1 by invoking the sub-routine 3.

In sub-routine 3, we decide on how to permute the community label output of the local clustering
estimate of Hx,y that best ‘synchronizes’ with the label estimates of the other nodes of G at that
instance. Observe that at the instant of synchronizing the output of Hx,y, other nodes of G have
either none or multiple label estimates. There is a possibility that more than one label estimate
per node is present in multiple boxes, each adding an ‘evidence’ for a node’s cluster. We select a
permutation of the labels by sequentially going over all permutations of [k] and selecting the one
that has the highest ‘synchronization-weight’. More formally, let Nx,y ⊂ [n] denote the indices of
the nodes in Hx,y; for all u ∈ Nx,y, denote by σ[u] ∈ [k] the label estimates formed by the local
clustering on Hx,y. The synchronization weight for a permutation π of [k] is defined as

Wπ :=
∑
i∈Nx,y

1C[i]6=empty

∑
j∈C[i] 1π(σ[i])=C[i][j]∑

j∈C[i] 1
.

In words, we go over all nodes in Hx,y that have at least one prior estimate and sum the fraction
of the previous estimate equaling the label assigned by the local clustering Hx,y after applying the
permutation π to the local clustering’s output. Among all permutations, we select the π∗ having
the highest synchronization weight (ties are broken arbitrarily). After doing so, for each node u
of Hx,y we append the label π∗(σ(u)) to the list C[u]. The key feature of the above procedure is
consideration of the fraction, which is a proxy for the ‘belief’ of the community label of a node,
rather than just a count; this is meaningful because the counts across different nodes can be
significantly skewed by the order in which the boxes are clustered and synchronized.
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Algorithm 4 Reduce by Majority

1: procedure Reduce-Majority(C)
2: for node in C.keys do
3: C[node]← Majority(C[node]).
4: end for
5: . Estimate haplotype by majority
6: for l ∈ {1, · · · , k} do
7: for i ∈ {1. · · · ,m} do
8: ŝl[i]← majority of alphabets among reads j with C[j] = l and covering site i.
9: end for

10: end for
11: return (ŝl[i])l∈{1,··· ,k},i∈{1,··· ,m}
12: end procedure

Computational Complexity

In this section, we discuss the computational complexity of implementing our algorithm and the
effect of various hyper-parameters on runtimes. A naive implementation of the algorithm would
incur a cost of the order n2 just to construct the graph G from the reads. This step itself may
be infeasible in practical scenarios where the number of reads will be on the order of millions.
However, our algorithm only needs the subgraphs Hx,y instead of the full graph G. Therefore, we
pre-process the reads and create a hash-map where for each location in [n]2, we store the list of
reads that have spatial label in that location. This requires one pass through the list of reads, i.e.,
has computational complexity of order n and storage complexity of order n. Now, creating the
adjacency matrix Hx,y is quadratic in only the number of nodes in Hx,y. The synchronization step
requires time complexity of the order of the number of nodes in Hx,y times the number of distinct
permutations of [k].

Choosing the Parameters of our Algorithm

Our algorithm has an inherent trade-off between computational complexity and statistical accuracy
that can be achieved by varying the hyper-parameters. For instance, if we decrease A while keeping
B fixed, the number of boxes and therefore the computational time are increased. However, the
statistical accuracy would improve since each node would now be present in many boxes and
hence the error-correction scheme performs more accurately. Similarly, increasing the parameter
M can reduce the run-time by considering fewer boxes to perform local clustering, while potentially
decreasing statistical accuracy because there is less evidence for determining community label of
each node.

4 Experimental Evaluation

We evaluate the performance of our proposed algorithm on both simulated and experimental data.
We implemented our algorithm in Python. The simulations, as well as the experimental evaluations
were conducted on a single core Intel I5 Processor with 2.3Ghz processor and 8 GB 2133 MHz
LPDDR3 RAM.
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Cov Err
ComHapDet AltHap HPoP

CPR MEC t(s) σ CPR MEC t(s) σ CPR MEC t(s) σ

7
0.05 99.2 662.7 18.3 0.2 99.9 960.7 13.4 0 99.8 961.5 3.1 0.1
0.1 98.2 1289.1 18.8 0.4 99.8 1871.2 13.8 0.1 99.4 1868.5 3.4 0.3
0.2 80.5 2640 18.2 1.6 85.9 4844.1 13.7 1.3 84.8 3862.7 3.5 8.6

10
0.05 99.9 923.4 29.2 0.1 99.9 1352.9 15.43 0 99.9 1354.9 1.7 0
0.1 99.5 1831.1 27.1 5.3 98.1 3132.3 15.5 0.8 99.8 2667.5 3.1 0.4
0.2 91.9 3575.9 27.9 1.3 92.8 5231.9 24.2 1.3 88.3 5488.2 3.3 11.5

15
0.05 100 1382.7 52.1 0 100 2034.5 30 0.1 100 2022.5 8 0
0.1 99.9 2772.9 56.4 0.1 99.9 3989.7 39.1 0 99.9 3986.5 7.3 0
0.2 97.9 5283.6 50 0.4 96.8 7646.3 39.2 0.6 96.7 7789 7 1.8

Table 1: Simulated diploid biallelic data.

Cov Err
ComHapDet AltHap

CPR MEC t(s) σ M-CPR CPR MEC t(s) σ M-CPR

7
0.002 98.6 97 76.7 0.9 99.5 89 687 295.2 14 93
0.01 93.8 662.1 81.2 10.8 97 88.7 966.2 289.8 17.5 92.4
0.05 97.1 1504.7 75.5 1.6 98.9 80.1 2887.4 332.1 20.2 86.3

10
0.002 99.8 93.7 137.5 0.17 99.9 83.7 1215.4 593.2 20.7 88.4
0.01 99.7 413.1 135.9 0.2 99.9 92.7 1029.1 592.7 14.6 95.4
0.05 99.4 2021.9 139.8 0.3 99.8 92.7 3632.0 592.4 14.6 95.4

15
0.002 99.9 124.6 300.4 0.1 99.9 89.9 1725 708.5 16.1 94
0.01 99.9 611.1 307.9 0.1 99.9 96 1628.6 781 9.82 97.6
0.05 99.9 2981.5 297.2 0.2 99.9 87.4 6721.3 713.3 20.4 92.1

Table 2: Simulated Triploid Tetraallelic Data.

Cov Err
ComHapDet AltHap

CPR MEC t(s) σ M-CPR CPR MEC t(s) σ M-CPR

7
0.002 80 1316.3 143.5 20.3 91.8 76.1 1388.6 521.4 20.8 87.5
0.01 79.1 1640.0 118.5 17.8 91.8 79.9 1812.8 515.8 20.5 88.1
0.05 68.3 3722.8 129.7 14 87.3 83.6 3481.9 503.1 20.2 92

10
0.002 98.9 193.1 253.3 1.4 99.6 71.9 1979.7 594.3 15.5 85.6
0.01 99.1 585.9 261.8 0.4 99.8 85.4 1779.4 585 18.5 92.1
0.05 98.2 2727.7 238.6 0.6 99.5 78.6 5331.4 667.5 15.6 89.7

15
0.002 99.8 182.7 487.0 0.2 99.9 85.2 2614.6 684.5 18.4 92
0.01 99.8 806.5 482.7 0.2 99.9 83.5 3973.7 684.1 17.4 92.6
0.05 99 4101.4 523.8 298.9 99.7 95.1 6397.6 682.5 14.5 97.4

Table 3: Simulated Tetraploid Tetraallelic Data.

4.1 Performance on Simulated Data

We first test the performance of our algorithm in simulations for both the diploid biallelic case as
well as the more challenging polyploid polyallelic case. Since the ground truth in simulations is
known, we use CPR, MEC and M-CPR as the primary performance benchmarks. The CPR and
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Cov Err
ComHapDet AltHap

CPR MEC t(s) σ M-CPR CPR MEC t(s) σ M-CPR

10
0.002 78.9 2256.6 551.1 15.6 94.1 76 2022.9 977.9 20 90.6
0.01 84.1 2250.4 563.2 14 95.8 70.4 3533.7 919.9 19.9 86.8
0.05 48.8 9578.4 526.3 25.6 81.9 75.8 7440.7 1222.1 17.9 90

15
0.002 99.3 308.2 1295.6 0.3 99.9 70.4 4960.6 1780.4 25.2 87.3
0.01 97.4 1528.5 1359.1 5.4 99.4 77.7 5493.4 1624.6 23.2 89.9
0.05 94.7 6554.2 1207.5 11.7 98.7 65.9 13751.6 2406.3 19 87.2

20
0.002 99.5 382.8 2097.1 0.2 99.9 77.1 7095.1 7561.2 19.3 91.9
0.01 99.5 1654.3 2116.5 0.2 99.9 87.3 5905.4 6862.1 18 96.1
0.05 99.6 7912.8 2298.9 0.2 99.9 65.1 23381.8 8563.4 24.5 86.9

Table 4: Simulated Hexaploid Tetraallelic Data.

M-CPR are reported as percentages, for ease of presentation. We compare the performance over
a range of problem parameters, namely the ploidy and alphabet size, as well as the measurement
parameters, in particular the coverage, average read length and error rates. In each case, the
hyper-parameters were set to A = 15 and B = 4. The parameter α = 0.95, for all polyploid cases
and α = 0.85 in the diploid case. Recall that the parameter α allows one to control the trade-off
between the run time and statistical accuracy; specifically, a lower value of α results in faster run
times at the cost of reduced CPR. The column σ displays the standard deviation of CPR (after
being multiplied by 100, for consistency). In each table and metric, the boldfaced entry represents
the algorithm with the best performance for that entry.

Simulated Data - Diploid Bialllelic Case

In the diploid case, we rely on the synthetic paired-end read data used in [17]. The average length
of the effective (i.e., haplotype-informative) paired-end read 4 with an insert gap in a paired end
reads being uniformly sampled between 50 to 150. We use a haplotype length (m in our notation)
of 700 in all case to be consistent with prior literature. As an example [23], which is often used
to benchmark haplotype assembly methods. The results are reported in Table 1. We simulate 15
instances for each configuration of coverage and error probability and report the average in Table
1. We compare our methods against AltHap [17], a sparse tensor factorization method, and HPop
[8], a state-of-the-art dynamic programming approach to haplotype assembly. Since for diplod case
CPR and M-CPR are identical, we only report the CPR. We restrict our attention to these methods
since it is already established in [17], [8], [28], that they are superior, both in terms of accuracy and
run times, as compared to various other approaches including SDHaP [16], an approach inspired by
semi-definite programming relaxations of the max-cut problem, BP [29], a communications system
design inspired belief propagation algorithm, HapTree [30], an algorithm inspired by a Bayesian
reformulation of the problem, and HapCompass [15], an algorithm focused on finding cycle basis
in a graphical representation of the haplotype assembly problem.

Simulated Data - Polyploid Polyallelic Case

We report the results in Tables 2, 3 and 4 for the cases of triploid, tetraploid and hexaploid,
respectively. In all cases, we considered the tetra-allelic case, i.e., the case of alphabets of size
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Method MEC Score t(secs)

ComHapDet 17738 207
AltHap 14580 105
HPoP 10596 102

HapCompass 12497 375
HapTree 46617 215

Table 5: The performance comparison of the various algorithms on the biallelic tetraploid Potato
dataset

4, and the average length of the effective (i.e., haplotype-informative) paired-end read 4. The
average insert size between the paired end reads was chosen to be 200 with a minimum gap of 50.
The benchmarking algorithm we consider is that of [17], the state-of-the-art algorithm capable of
polyploid polyallelic phasing; all other methods are restricted to biallelic variants. In each case, we
test our algorithm on 10 different problem instances, where in each instance, a haplotype sequence
of length 1000 was phased. We use the same method and the publicly available code from [17] to
generate the synthetic data for the various instances. For the hexaploid case, we do not report
performances on coverage smaller than 10, since the performance of both algorithms are poor.

4.2 Performance on Real Data

Tetraploid Potato Data Set

We test our algorithm on a tetraploid real data set of Chromosome 5 of Potato species Solanum
Tuberosum, whose reference genome is available publicly 1. We considered a set of paired-end
sequence reads reported in experiment SRX3284127 available in the NCBI database 2. We then
mapped the reads to the reference genome using the BWA software of [31]. Subsequently, we use the
FreeBayes software [32] for SNP calling and create the vcf file. We then extracted out connected
components of reads and considered the haplotype assembly on instances that were at-least 20
haplotypes long. The data set of reads after SNP calling is available in the Github link provided in
Abstract. We compare the performance of our algorithm with AltHap, HapCompass [33], HPoP [8]
and HapTree [30], and report the results in Table 5. We use the recommended hyper parameters
of A = 20, B = 5, α = 0.85 and the minimum problem size as 20. We chose these set of parameters
to minimize run time, while at the same time ensuring that all reads in a data set are covered by
at-least one community estimate.

Table 5 compares MEC scores achieved by our method with those achieved by competing techniques.
Note that the true accuracy is captured by the correct phasing rate but the ground truth data in this
set is not available and thus CPR cannot be computed. While being a convenient surrogate metric,
the MEC score may be misleading since e.g. a very low MEC score does not necessarily imply
high CPR (see Table 1 of [17] for an illustrative example). Note that the task of tetraploid phasing
presents a challenge to our scheme because the weight of an edge in the spatial graph (see Equation
(3) is biased towards being positive, even if the reads on the end points of an edge originate from

1http://ftp.ensemblgenomes.org/pub/plants/release-41/fasta/

solanum tuberosum/dna/
2https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP119957
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different strings; this limits accuracy of assembly schemes that rely on read clustering. Finally,
as illustrated by simulations, our methodology is suitable to settings where sequencing coverage
exceeds ∼ 10× (both in diploid and polyploid setting). At the time of writing this paper we do not
have access to data sets with coverage beyond 10× and thus do not perform further experiments
on real data.

4.3 Results and Discussions

The results indicate that our method is comparable to the state of the art, both in the diploid as
well as the more challenging polyploid polyallelic scenario. In the diploid biallelic case, we see in
Table 1 that our method performs comparable to both AltHap and HPoP in terms of reconstruction
accuracy as measured by CPR and MEC scores. In the polyploid polyallelic scenario however, tables
2, 3 and 4 indicate that our algorithm is superior in terms of both CPR and MEC compared to
the state of art, namely AltHap, which is the only methodology prior to our work that is capable
of handling polyploid polyallelic data. In terms of experiment on a real data ployploid experiment,
we see in Table 5, that our method performs comparably both in terms of reconstruction accuracy
as measured by MEC score and runtime complexity as compared to other state of art methods.
The results demonstrate that our methodology has significantly higher reconstruction at higher
coverages as compared to lower coverages. This is unsurprising, as at higher coverages, there are
more reads and hence more data to recover the haplotypes. Moreover, the runtime complexity of
our method scales very gracefully with increasing coverage, making it attractive for many practical
high coverage scenarios.

5 Conclusions

In this paper, we propose a novel methodology to assemble both diploid and ployploid haplotypes.
The main observation we make is that, by a spatial representation of the paired-end reads, we
can effectively convert the problem about haplotype assembly into a community detection task
on a spatial graph. Our algorithm assigns to each paired end read, a spatial label corresponding
to the starting indices of the two read fragments. We then divide the problem into overlapping
instances, each of which considers the set of reads located nearby in this embedding and performs
a community clustering, where the community label of a read (node) is the haplotype from which
it originates from. Finally, for each read, we take the majority of the estimated communities from
the various instances as the final community estimate of that read. We then use this estimated
community labels for the reads to output the reconstructed haplotype.
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