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Community Detection - Abstract Definition

- Grouping objects given indirect information of memberships.

@
@ ® partitioned into groups
® o ®

A population




Community Detection - Examples

- Grouping objects given indirect information of memberships.

®
@ ® ®
A population ® ® partitioned into groups T
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1. People on an Online Social Network. 1& #




Graph as Information

Important sub-class

Population - Represented as nodes of a graph.

Meh

|

bership Inforn

|

ation - Encoded as labeled edges of the graph.

Graph Clustering Problem -

Given an unlabeled graph data, recover the partition of nodes.



Graph Clustering

Graph Clustering -

Given an unlabeled graph data, recover the partition of nodes.

What if there are additional contextual information on each node ?

Web-pages, the textual content in a page.
Social Networks - Personal information (age, location, income....)

Computational Biology - Metadata generated by measurements.



Planted Partition Random Connection Model




Planted Partition Random Connection Model

Vertex Set- {1,2,--- , N} N, - # nodes

Each node i € |1, N,,] has two labels -
location label X; € RY and a community label Z; € {—1,1}



Planted Partition Random Connection Model

Vertex Set - {1,2,--- , N, } N, - # nodes

Each node i € |1, N,,] has two labels -
location label X; € RY and a community label Z; € {—1,1}

Random Graph Parameters

A >0 Intensity.

d > 2 Dimension of embedding.

fin(')afout(') :R—I— — [O, 1] s.t Vr Z 0 9 fzn(r) Z fout(r)

2 P - fzn(r>
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Planted Partition Random Connection Model

1) N, ~ Poisson(An)number of nodes
On avg X points per unit area.
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1) N, ~ Poisson(An)number of nodes
On avg X points per unit area.

2) Each node i € |1, N,|, has a
nl/d p1/d
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- Location label X, c [—

sampled independently and uniformly



Planted Partition Random Connection Model

V1

1) N, ~ Poisson(An)number of nodes
On avg X points per unit area.

2) Each node i € |1, N,|, has a
nl/d 1/d
- Location label X; ¢ [— 55 ]

sampled independently and uniformly



Planted Partition Random Connection Model

V1

1) N, ~ Poisson(An)number of nodes
On avg X points per unit area.

2) Each node i € |1, N,|, has a
nl/d p1/d
2 7 2 ]
- Community label Z; ¢ {—1,+1}

- Location label X, c [—

sampled independently and uniformly



Planted Partition Random Connection Model

I .
—o 1) N,, ~ Poisson(An)number of nodes
. On avg X points per unit area.
® /1 .
2) Each node i € |1, N,|, has a
nl/d p1/d
\ ° - Location label X; [— 5 5 ]
° - Community label Z; € {—1,+1}

sampled independently and uniformly

3) Edge between i, € [1, N,,] with probability either

fin(|Xs — X51|) -If Z; = Z; (same colors) — vr>0,1> fin(r) > fou(r) >0

More edges within
communities than across.

fout (|| Xi = X;l]) - If z, £ 7z, (different colors)

Conditional on node labels, edges are independent



Planted Partition Random Connection Model

1) {X;}ien - @ Poisson Point Process on R? with intensity \

2) Independently mark it {Z; }icn each of which is uniform over {-1,1}

3) Connect any two nodes i ~ j € N with probability
fin(l|1Xi = X;|[)1z,=2; + four ([ Xi — X;l[)1z,22z, independently for all pairs

nl/d nl/d] d

* M G,2G restrictedto [,




Planted Partition Random Connection Model

Model Parameters
A >0 Intensity

d > 2 Dimension of embedding

fin(')afout(’) :R—I— — [Oa 1] S.t Vr Z 0 9 fzn(,r) Z fout(r)

1 b - fzn(r)

\\ . —  Sout(r)




Planted Partition Random Connection Model

Assume /R fout(HxII)d:r:S/ fin(l|z]])dz < 00
rERI

rcR4

Avg # of neighbors in

- same community is - (A/2)/€Rd fin([|z[|)dz — o(1)
- opposite community is -()\/QV Four(|lz])dz — o(1)
xERY
T
o——9

. ¥ Constant avg degree




Community Detection Problem

V1

Given G, and {X;}ico,n,), estimate {Z; }icj1, N,

{7i}iejo,n.]- Community estimates




Community Detection Problem

I —o Given G, and {Xi}iE[O,Nn], estimate {Z’i}iE[l,Nn]
° \/ﬁ . .
K’ {7i bic[o,Nn)- Community estimates
° N.
1 n
o \ O, = N ZZm overlap of the estimator
Jn =1

O, :=| Fraction of correctly classified nodes - Fraction of incorrectly classified nodes |



Community Detection Problem

I —o Given G, and {Xi}iE[O,Nn], estimate {Z’i}iE[l,Nn]
° \/ﬁ " "
K’ {7i bic[o,Nn)- Community estimates
® | N,
o \ O, = N Z Z;7;|  overlap of the estimator
Jn =1
O, :=| Fraction of correctly classified nodes - Fraction of incorrectly classified nodes |

Community Detection is solvable if there exists an estimator {7;},c10 v, ]
for every n, and some v > 0 s.t. lim P[O, > 1] =1

n—oo

Tz'Zi
Np,

Ny,
SLLN gives ) — 0 for blind guessing
I=1

Solvability =~ asymptotically beating a random guess



Community Detection Problem

>r



Community Detection Problem

0<b<a<l >
®
o——9
@ Isolated Nodes = No interaction with other points
o
N \ o| Clearly 0. <1 — ¢ Ma(DE" <
o

v4(1) Vol of unit ball in d dimensions



Solvability Phase Transition

An overlap of 7Y is achievable if there exists an estimator {Ti}f\ﬁl

such that lim P|O; >~] =1



Solvability Phase Transition

An overlap of 7Y is achievable if there exists an estimator {7'7;}7];\211

such that lim P|O; >~] =1

Solvability iff any v > 0 is achievable



Solvability Phase Transition

An overlap of 7Y is achievable if there exists an estimator {7'7;}7];\;”’1

such that lim P|O; >~] =1
Solvability iff any v > 0 is achievable

~

)\1 >\2 A

# of nodes N,, ~ Poisson(An)



Solvability Phase Transition

Theorem - YV f;,,(+), fout(+),d > 2, 30 < A1 < A2 < oo such that -
A < A1 = Community Detection is not solvable

A > Ao = Our algorithm solves Community Detection efficiently

~

)\1 >\2 A

# of nodes N,, ~ Poisson(An)

Our algorithm is asymptotically optimal.




Algorithm ldea




Algorithm ldea

Spatial graph - Locally dense but globally sparse




Algorithm ldea

Spatial graph - Locally dense but globally sparse

Consider the example fin(r) = al,<r , fout(r) =bl,<r
0<b<a<l

>



Algorithm ldea

Spatial graph - Locally dense but globally sparse

Consider the example fin(r) = al,<r , fout(r) =bl,<r
0<b<a<l

>

Locally Dense - ‘Nearby nodes connect with constant probability independent of n

Globally Sparse - Order n edges in total

/]

7

Spatial Graph SBM




Algorithm ldea

# common neighbors is Poisson with mean

2

Same community - Ac(a) R <

Opposite communities - Ac(a) R%ab




Algorithm ldea

# common neighbors is Poisson with mean

2

Same community - Ac(a) R (

Opposite communities - Ac(a) R%ab

i [a+0b ’
Setthreshold -  T'(a) = c(a) R\ :

Pairwise-Classify(x.y)

IF # (common neighbors) < 7(a), DECLARE community(x) # community(y)
ELSE DECLARE  community(x) — community(y)




Algorithm ldea

# common neighbors is Poisson with mean

2

Same community - Ac(a) R (

Opposite communities - Ac(a) R%ab

i [a+0b ’
Setthreshold -  T'(a) = c(a) R\ :

Pairwise-Classify(x.y)

IF # (common neighbors) < 7(a), DECLARE community(x) # community(y)
ELSE DECLARE  community(x) — community(y)

Chernoff bound -
P(Mis-classifying a given pair of nodes at distance aR ) < ¢—A¢ ()R



Algorithm ldea

Tesselate R into grids of side 2/4  Classify cells to be Good or Bad




Algorithm ldea

Tesselate R into grids of side 2/4  Classify cells to be Good or Bad

Cell Good if
« ©° * 1. At-least (1 — ¢) Mean # of nodes
° 2. No inconsistencies in pairwise
o e . checks with all neighboring cells
) o -~
o o
®| o °
o o

| Same Different
Example of Inconsistent output

Same



Algorithm ldea

Tesselate R? into grids of side R/4

Classity cells to be Good or Bad

Cell Good if

1. At-least (1 — ¢) Mean # of nodes
2. No Inconsistencies in pairwise
checks with all neighboring cells

Same Different

Example of Inconsistent output

Same



Algorithm ldea

Main Routine
- Partition each good component with Pairwise-Classify

- Output +1 estimate to all nodes in bad cells




Algorithm ldea

Main Routine

- Partition each good component with Pairwise-Classify
- Output +1 estimate to all nodes in bad cells

Algorithm succeeds if a “large”
connected component of “gray”
cells is present

A k-Dependent Percolation Process. [Liggett, Schonmann, Stacey, '97]



Impossibility

Easier problem -

Given the data (G, {X:}ic[1,n.]), can you classify any two randomly
chosen nodes better than chance

! Community Detection is solvable if the above
. can be solved with success probability at-least
g
+
\ . 2
. \ (Cluster the whole graph and then answer)
Vi

Will prove that the above is not solvable for small \




Impossibility

W.h.p. - distance between the two chosen nodes is ‘large’

An easier problem

Estimate better than chance, the community label of a random node
given community labels of all “far away” nodes.




Information Flow from Infinity Problem

Does Hv/ > ( and 7'(/) € {—1,+1} as a measurable function of

o 1 /
G, { X bien, 124 || XG]] > 7} such that liminf PO[ry = Zg] > = + v ?

T— 00 2

If answer above is NO, then by classical ergodic arguments
Community Detection is not solvable.




Information Flow from Infinity Problem

Does Hv/ > ( and 7'(/) € {—1,+1} as a measurable function of

o 1 /
G, { X bien, 124 || XG]] > 7} such that liminf PO[ry = Zg] > = + v ?

T— 00 2

Theorem - If the random spatial graph with intensity )\ and connection
function fin(:) — fout(-) does not percolate, then the answer to the above
qguestion is NO.




Information Flow from Infinity Problem

Does Hv/ > ( and 7'(/) € {—1,+1} as a measurable function of

o 1 /
G, { X bien, 124 || XG]] > 7} such that liminf PO[ry = Zg] > = + v ?

T— 00 2

Theorem - If the random spatial graph with intensity )\ and connection
function fin(:) — fout(-) does not percolate, then the answer to the above

qguestion is NO.
S

Corollary

? ®
1. If d = 1, then community detection is not | =/
solvable for any X, fi.. (), fout () '/
k‘.’i'
o




Information Flow from Infinity Problem

Enriched probabillity space.

1) Sample the location labels and community labels as before.
4

O
¥y

1

®
‘®



Information Flow from Infinity Problem

Enriched probabillity space.
1) Sample the location labels and community labels as before.

2) {Uijli<jen -i.i.d. U[0,1] RVs.
every pair ¢ < j € N nodes, marked with U;;




Information Flow from Infinity Problem

Enriched probabillity space.
1) Sample the location labels and community labels as before.

2) {Uijli<jen -i.i.d. U[0,1] RVs.
every pair ¢ < j € N nodes, marked with U;;

1

3) An edge between i < j ¢ N iff 2
Usij < fin([|Xs — X5|)1z,=2;, + four (|| Xs — X;||)1 2,22,



Information Flow from Infinity Problem

{Uij}i<jen, -i.i.d. U[0,1] sequence.
Edge between i < j € N ff

Usij < fin([|Xs = X5||)1z,22, + four (|| Xi — X)) 12,22,

‘Uz‘




Information Flow from Infinity Problem

{Uij}icjen, -i.i.d. U0, 1] sequence.
Edge between i < j € N ff

Usij < fin([|Xs = X5||)1z,22, + four (|| Xi — X)) 12,22,

Only certain edges are Informative

No edge always

fin([1 X3 = X1)

fout(HXi _ XJH)

Presence of an edge always




Information Flow from Infinity Problem

1

No edge always
in (|| Xi — X
C feewenis
fout(HX’i_XjH)

Presence of an edge always

0

Create an Information Graph I from {X;}ien and {Uij}i<jen
ivp o= fout(|| X — X)) < Uij < fin([| X0 — X])

Structural Lemma -

, o . Extend to connected components
L NG ] = Ly = 4 of I instead of just edges.

L~ g ] = Ly F 4




Information Flow from Infinity Problem

V1(0) C N - Set of nodes in the connected component of origin in .

Lemma - On the event |V;(0)| < oo,

P° | Zo = +1|G, {Ui; bicjs { Xi Yien, Zktreve) | = 5 as

Community labels on disconnected components of [ are independent.

Proof - Bayes’ rule along with the previous structural observation.



Information Flow from Infinity Problem

On the event |V;(0)| < oo, no estimator for the community label at origin can
beat a random guess for large enough 7.

Corollary
If |V:(0)] < a.s., i.e.if [ does not percolate, then cannot solve the
Information Flow from Infinity Problem.




Information Flow from Infinity Problem
The Key ldea -

Reduce to a percolation criteria.
Labels on different components are independent.

[Mossel, '00],[Lubetzky, Sly, '14],
[Abbe,Massoulié,Montanari,Sly,Srivastava,’17]

Drawbacks Our method is provably sub-optimal !

.\

O

? ®
=
v

Recent methods that improve this technique.
[Polyanskiy, Wu, '18][Abbe, Boix, ‘18]
®


https://arxiv.org/search/cs?searchtype=author&query=Polyanskiy%2C+Y

Distinguishability - Are there communities ?

Determine whether the data {X; };cn, G is sampled from

1) The planted model with connection functions fi.(-) and fout(+)

2) H)y 4.4 - @ model without planted communities.



Distinguishability - Are there communities ?

Determine whether the data {X; };cn, G is sampled from

1) The planted model with connection functions fi.(-) and fout(+)

2) H)y 4.4 - @ model without planted communities.

Theorem - The induced measure by H) ,(.) 4 is mutually singular with
respect to that by (G for any )\, fin(*), fout(:) @and g(-) where fin # fout a-e.




Distinguishability - Are there communities ?

Determine whether the data {X; };cn, G is sampled from

1) The planted model with connection functions fi.(-) and fout(+)

2) H)y 4.4 - @ model without planted communities.

Theorem - The induced measure by H) ,(.) 4 Is mutually singular with
respect to that by (G for any )\, fin(*), fout(:) @and g(-) where fin # fout a-e.

Can learn the presence of a partition, even though in some cases cannot
find it better than a random guess !




33
Distinguishability

Theorem - The induced measure by H) ,.) 4 is mutually singular with
respect to that by (G for any ), fin("), four(-) and g(-) where fin 7# fout a.e.

Proof - Triangle profiles are different in the two models.

Let L be alarge constant. Define h(x,y) = 14|<L.||y|<L.||z—y||<L

At each node B(Xz) = Z h(X; — Xi, Xk — Xi)Limgjimgkinak
J,keN, jFEkF1

Ergodicity and moment measure expansion implies the empirical average

. > ien Ly, < h(X)

IS a.s. finite and different in the two models.
T—oo ) ien Ljxi|<T

Proof gives a linear time algorithm to test between the two models.



Distinguishability Problem

Can cluster spatially locally, but no way to “synchronize” them.

Connected component to perform Distinguishability only requires large

Community Detection. number of “gray” cells.
True by SLLN for all parameters

New Phenomena - [Mossel, Neeman, Sly, '15] show that the SBM is
distinguishable from the Erdos-Renyi graph iff Community Detection is
solvable on the SBM.



Conclusions

- Spatial graphs are ‘locally-dense’ - basis for algorithms and analysis.

- Community Detection in the case with spatial labels
has a non-trivial phase transition.

- Can always identify the presence of a partition,
l.e. no phase-transition for the distinguishability problem.

Future Work

- Relax the assumption that spatial locations are known.
* Either known noisily or are missing completely.



Thank You

https://arxiv.org/abs/1706.09942




