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Abstract

Motivated by emerging need of learning algorithms for large scale networked and decentral-
ized systems, we introduce a distributed version of the classical stochastic Multi-Arm Bandit
(MAB) problem. Our setting consists of a large number of agents n that collaboratively and
simultaneously solve the same instance of K armed MAB to minimize the average cumulative
regret over all agents. The agents can communicate and collaborate among each other only
through a pairwise asynchronous gossip based protocol that exchange a limited number of bits.
In our model, agents at each point decide on (i) which arm to play, (ii) whether to, and if so
(iii) what and whom to communicate with. Agents in our model are decentralized, namely their
actions only depend on their observed history in the past.

We develop a novel algorithm in which agents, whenever they choose, communicate only arm-
ids and not samples, with another agent chosen uniformly and independently at random. The

per-agent regret scaling achieved by our algorithm is O
(( dK

n e+log(n)

∆ log(T ) + log3(n) log log(n)
∆2

))
.

Furthermore, any agent in our algorithm communicates (arm-ids to an uniformly and indepen-
dently chosen agent) only a total of Θ(log(T )) times over a time interval of T .

We compare our results to two benchmarks - one where there is no communication among
agents and one corresponding to complete interaction, where an agent has access to the entire
system history of arms played and rewards obtained of all agents. We show both theoretically
and empirically, that our algorithm experiences a significant reduction both in per-agent regret
when compared to the case when agents do not collaborate and each agent is playing the standard
MAB problem (where regret would scale linearly in K), and in communication complexity when
compared to the full interaction setting which requires T communication attempts by an agent
over T arm pulls.

1 Introduction

The Multi Armed Bandit (MAB) problem is a fundamental theoretical model to study online learn-
ing and the exploration-exploitation trade offs associated with them. In this paper, we introduce
a collaborative multi-agent version of the classical MAB problem which features a large number of
agents playing the same instance of a MAB problem. Our work is motivated by the increasing need
to design learning algorithms for several large scale networked systems. Some common examples
include (i) social and peer-to-peer recommendation services catering to large number of users who
are in turn connected by a network ([38],[55],[20], [8]), (ii) a collection of distributed sensors or
Internet of Things (IoT) devices learning about the underlying environment (such as road traffic
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conditions) and connected with each other through some communication infrastructure such as the
wireless spectrum ([6, 46]), and (iii) online marketplaces with many services catering to the same
customer base, where the different services can potentially share data about the users in some
privacy compatible form ([11]) and learning in groups ([23], [34]).

A common theme in many of these applications is the presence of a single MAB instance, which
many agents are simultaneously playing to minimize their own cumulative regret. Importantly, the
agents can collaborate to speed up learning by interacting with each other only in some restricted
form. As an example, the number of bits communicated or the frequency of interactions among
agents may be limited in settings where either the agents are geographically distributed and com-
munications are expensive or when in a IoT network where the devices performing learning are
energy constrained. Our objective in this paper is to understand the benefit of collaboration in
speeding up learning under natural communication constraints.

1.1 Model overview

Our setting consists of a large number of agents n, that collaboratively solve the same instance of
a stochastic K-armed MAB problem ([13]), where each arm yields a binary valued reward. Each
agent is interested in playing the MAB problem to minimize their own cumulative regret. If there
were just one agent, or if the agents were oblivious to each other and did not collaborate, then each
agent is playing independently, the classical K armed MAB problem. In our model, the agents
can potentially collaborate with each other in solving the MAB problem by sending messages over
a communication network connecting them. However, there are limitations on the information
sharing architecture in our model – agents are restricted to only pairwise communication.

Formally, agents are equipped with independent Poisson clocks (asynchronous system), and when
an agent’s clock rings, an agent takes an ‘action’. Each action of an agent consists of (i) which
arm to play to observe a reward, (ii) whether to communicate, and if so, (iii) what and with whom
to communicate. Our model imposes three constraints on the communications among the agents.
Firstly, each agent, whenever it chooses to communicate, can do so with only one other agent
and is thus, is ‘gossip style communications’. Secondly, agents can only communicate a limited
O
(
log(nK)

)
bits, each time they choose to communicate. The number of bits communicated in

each communication attempt cannot scale with time or depend on the problem instance. In par-
ticular, this forbids agents from sharing either all their sample history or estimates for arm means
upto arbitrary level of precision. Thirdly, each agent can access the communication medium only
o(T ) times over any horizon of T pulls of arms. This restriction disallows agents from communicat-
ing each time they pull an arm and observe a reward. Thus, agents must aggregate their observed
history in some form, where the size of the message does not increase with time and communicate.

The agents are decentralized - namely the actions of each agent (which arm to play, whether to
communicate and if so to whom and what to communicate), can only depend on the agents past
history of arms played, rewards obtained and messages received.
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1.2 Model Motivations

We highlight two instances of our model to motivate our choice of problem formulation and our
restrictions on the communications among agents.

The first example is the setting of multiple users (aka agents) on a social network, visiting restau-
rants in a city. In this case, the restaurants can be modeled as arms in a MAB providing stochastic
feedback on its quality during each visit. Each visit by an agent to a restaurant provides a (noisy)
score, using which an individual agent can update her/his opinions of restaurants. Furthermore,
the social network platform enables users or agents to personally communicate to one another to
exchange their experiences. The feedback constraint on the number of bits translates to only rec-
ommending a restaurant identity, as opposed to the real-valued score for that (and/or any other)
restaurants. If the agent communicates her/his top-scoring restaurant (as is the case in our algo-
rithm later), then agents are implicitly sharing rankings (their current top-choice) instead of scores,
which is well-known to be more interpretable (different people’s scores are hard to compare). Our
framework thus provides a guideline to understand good policies for the users to explore the city
that efficiently leverage the information exchanged on the underlying social network.

A second example is from robotics, where several robot agents can communicate over a wireless
ad-hoc network in a cooperative foraging task [52]. The robots need to forage for a high-reward
site from among several possible physically separated locations (these sites constitute the arms of
the bandit). Since the communciation network is bandwidth constrained, and the robot agents can
only communicate (typically pair-wise) with those within their radio-range, the communication
constraints we consider are appropriate in this setting. We also refer to [33] for another related
robotics example involving collaborative leak detection in a pipe system.

1.3 Main Result

We consider a setting with n agents and K arms of a MAB problem. The main result in this paper
is that we develop an algorithm that leverages collaboration across agents, such that the per-agent

regret after an agent has played for T times scales1 as Θ

(
log(n)+dK

n
e

∆ log(T ) + log3(n) log log(n)
∆2

)
,

where ∆ is the arm-gap between the best and the second best arm. Moreover, in a time interval
of T , an agent communicates for about log(T ) times, where each communication is an arm-id, i.e.,
uses at-most log2(K) + 1 bits per communication.

The main idea in our algorithm is to use the communication medium only to recommend arms,
rather than to exchange observed scores or rewards. Our policy restricts agents to only play from
the set of arms they are aware of at any instant of time. Agents are initially only aware of a small
set of arms, and this set increases with time as agents receive recommendations. Agents in our
algorithm communicate with another agent chosen uniformly and independently at random, and
thus the communications induced by our algorithms is ‘gossip style’ [47]. Qualitatively, our regret
scaling occurs due to two reasons: (i) The (local-explore + gossip) mechanism underlying our algo-
rithm ensures that the best arm spreads quickly through the network to all agents. Notice that since
agents only play from among arms they are aware of, it is not apriori clear that all agents become

1All logarithms in this paper are natural logs unless otherwise specified.
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Figure 1: A plot consisting of 80 agents and 40 arms comparing the single agent UCB without com-
munications with our scheme. The arm means were randomly generated in the interval (0.4, 0.85)
and the curve is averaged over 10 runs with 95% confidence interval.

aware of the best-arm at all. (ii) Nevertheless, our algorithm ensures that each agent in the network

only ever explores a vanishingly small fraction Θ( 1
n + log(n)

K ) of the arms. In other words, the sub-
optimal arms do not spread and thus not all agents need to learn and discard the sub-optimal arms.

Analytically, we introduce several novel coupling arguments and tail estimates to study variants
of the classical spreading processes on graphs (cf. Theorem 25, 27), which can be of independent
interest in themselves. Furthermore, we employ arguments based on the linearity of expectation to
handle the dependencies of the regret among the agents induced by our algorithm (cf. Propositions
11,13,16), which we believe can be useful in studying other algorithms for our model.

1.4 Comparison with Benchmark Systems

Since we are interested in quantifying the effect of collaboration through limited noisy pairwise
interactions among the agents, we compare our result with the two extreme opposite scenarios of
collaboration among the agents - a setting with no communication and a one with complete inter-
actions among agents.

1. No Communication regime - If the players are unaware of each other and do not interact
at all, then each player will see a standard MAB problem consisting of K arms. Thus, from well
known results (for ex. [4]), each agent after playing the MAB problem for T time steps, must incur
a regret that scales as O

(
K
∆ log(T )

)
.

2. Full Interaction Regime - On the other end is the perfect collaboration model in which
every agent, whenever its clock rings, plays an arm, observes a reward and then broadcasts both
the arm played and reward obtained to all other agents. In this case, every agent before playing
an arm, has access to the entire system history and thus can jointly simulate a single agent op-
timal scheme. Thus, after a total of T clock ticks of tagged agent, the total number of arm pull
by all agents is roughly nT . It is not exact as there is some randomness in the number of times
an agent plays in a given time interval determined by the randomness due the clock process of
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agents. Thus, the total network as a whole will incur an average regret of order O
((

K
∆ log(nT )

))
.

As there are n agents in total, the per agent regret in this case scales as 1
n O
((

K
∆ log(nT )

))
which is

of order O
(
K
n

1
∆ log(T ) + log(n)

n∆

)
. This is the best possible per-agent regret scaling one can hope for

in this networked setting and no other collaborative policy can beat this regret scaling. However,
to achieve this, each agent must communicate, both its arms and the observed reward (which takes
at-least log2(K) + 1 bits) to all other n− 1 agents, each time it plays an arm. In other words, an
agent must communicate T times, over T plays of the arm, and this communication is broadcast
to all other agents.

In our model on the other hand, we are restricted to just pairwise random communications and
each agent can participate in o(T ) communications over T times it pulls arms to collect rewards.
Nevertheless, we show that our algorithm achieves, both a significant reduction in the per-agent
regret compared to the setting of no interactions among agents by bringing the order from K to
dKn + log(n)e as the leading term in front of log(T )

∆ . Our algorithm is also only a factor log(n) off

from the setting of complete interaction among agents, which has a factor of Kn in front of the log(T )
∆

term. Moreover, our algorithm achieves the reduced regret scaling with a much smaller communi-
cation resources where an agent only uses the communication channel of order log(T ) times over T
times of play of an agent. We plot in Figure 1, a representative situation showing the regret growth
of our algorithm against that of the no communication and full interaction case.

Organization of the Paper - In Section 2, we give a precise mathematical formulation of the
problem. We then specify the algorithm in Section 3 and the main theorem statement is given
in Section 4. We then give an overview of the proof in Section 5. We evaluate our algorithm
and benchmark its performance empirically both in synthetic and real data in Section 6. We then
survey related work in Section 7, and then conclude with some discussions and open problems. The
full proof of our main result is carried out in Appendices A, B and C.

2 Problem Setting

We have a collection of n agents, each of whom is playing the same instance of a MAB problem
consisting of K arms. The K arms have unknown average rewards (µi)i∈{1,··· ,K}, where each
µi ∈ (0, 1). Without loss of generality, we assume that 1 ≥ µ1 > µ2... ≥ µK ≥ 0. However, the
agents are not aware of this ordering of arm-means. Denote by the arm-gap ∆ := µ1 − µ2 and we
shall assume that ∆ > 0. If at any time, any agent plays an arm i ∈ [n], it will receive a reward
distributed as a Bernoulli random variable of mean µi, independent of everything else.

2.1 System Model

Clock Process - The system evolves in continuous time, where each agent i ∈ [n] is equipped with
an unit rate Poisson process on R+ denoted by Ci(·), which functions as a clock for agent i. Each
agent i ∈ [n] takes an action only at those random time instants when the clock Ci(·) ‘ticks’, i.e.,
only at those random times t ≥ 0 such that Ci(t)− Ci(t−) = 1. The times t when a clock ticks is
referred to as an epoch of the clock process. The processes (Ci(·))i∈[1,n] are all i.i.d., and hence the
actions of different agents are not synchronized.
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2
<latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit>

2
<latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit>

2
<latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit><latexit sha1_base64="bGronyvkxiOrftIdMcDlRYPusyM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSrlU9t+o1ryr12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AfCGMtg==</latexit>

1
<latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit>

3
<latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit>

3
<latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit> 3

<latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit> 3
<latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit>

{3}
<latexit sha1_base64="Y6yLsjejVs9aiMqQkPOQHgV9Q4E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi00oWy223bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuRNRwKRT3UaDknVRzGkeSt6Px3cxvP3FtRKIecZLyMKZDJQaCUbSSH+SXwbRXrbl1dw6ySryC1KBAs1f9CvoJy2KukElqTNdzUwxzqlEwyaeVIDM8pWxMh7xrqaIxN2E+P3ZKzqzSJ4NE21JI5urviZzGxkziyHbGFEdm2ZuJ/3ndDAc3YS5UmiFXbLFokEmCCZl9TvpCc4ZyYgllWthbCRtRTRnafCo2BG/55VXSuqh7bt17uKo1bos4ynACp3AOHlxDA+6hCT4wEPAMr/DmKOfFeXc+Fq0lp5g5hj9wPn8Ao9GOjw==</latexit><latexit sha1_base64="Y6yLsjejVs9aiMqQkPOQHgV9Q4E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi00oWy223bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuRNRwKRT3UaDknVRzGkeSt6Px3cxvP3FtRKIecZLyMKZDJQaCUbSSH+SXwbRXrbl1dw6ySryC1KBAs1f9CvoJy2KukElqTNdzUwxzqlEwyaeVIDM8pWxMh7xrqaIxN2E+P3ZKzqzSJ4NE21JI5urviZzGxkziyHbGFEdm2ZuJ/3ndDAc3YS5UmiFXbLFokEmCCZl9TvpCc4ZyYgllWthbCRtRTRnafCo2BG/55VXSuqh7bt17uKo1bos4ynACp3AOHlxDA+6hCT4wEPAMr/DmKOfFeXc+Fq0lp5g5hj9wPn8Ao9GOjw==</latexit><latexit sha1_base64="Y6yLsjejVs9aiMqQkPOQHgV9Q4E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi00oWy223bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuRNRwKRT3UaDknVRzGkeSt6Px3cxvP3FtRKIecZLyMKZDJQaCUbSSH+SXwbRXrbl1dw6ySryC1KBAs1f9CvoJy2KukElqTNdzUwxzqlEwyaeVIDM8pWxMh7xrqaIxN2E+P3ZKzqzSJ4NE21JI5urviZzGxkziyHbGFEdm2ZuJ/3ndDAc3YS5UmiFXbLFokEmCCZl9TvpCc4ZyYgllWthbCRtRTRnafCo2BG/55VXSuqh7bt17uKo1bos4ynACp3AOHlxDA+6hCT4wEPAMr/DmKOfFeXc+Fq0lp5g5hj9wPn8Ao9GOjw==</latexit><latexit sha1_base64="Y6yLsjejVs9aiMqQkPOQHgV9Q4E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi00oWy223bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZelEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuRNRwKRT3UaDknVRzGkeSt6Px3cxvP3FtRKIecZLyMKZDJQaCUbSSH+SXwbRXrbl1dw6ySryC1KBAs1f9CvoJy2KukElqTNdzUwxzqlEwyaeVIDM8pWxMh7xrqaIxN2E+P3ZKzqzSJ4NE21JI5urviZzGxkziyHbGFEdm2ZuJ/3ndDAc3YS5UmiFXbLFokEmCCZl9TvpCc4ZyYgllWthbCRtRTRnafCo2BG/55VXSuqh7bt17uKo1bos4ynACp3AOHlxDA+6hCT4wEPAMr/DmKOfFeXc+Fq0lp5g5hj9wPn8Ao9GOjw==</latexit>

{2}
<latexit sha1_base64="Etv+2cKl/dI8Z53t0qDPB1K5K2E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQtlst+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8KJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdjajhUijuo0DJu6nmNI4k70STu7nfeeLaiEQ94jTlYUxHSgwFo2glP8gbwaxfrbl1dwGyTryC1KBAq1/9CgYJy2KukElqTM9zUwxzqlEwyWeVIDM8pWxCR7xnqaIxN2G+OHZGLqwyIMNE21JIFurviZzGxkzjyHbGFMdm1ZuL/3m9DIc3YS5UmiFXbLlomEmCCZl/TgZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YCHiGV3hzlPPivDsfy9aSU8ycwh84nz+iS46O</latexit><latexit sha1_base64="Etv+2cKl/dI8Z53t0qDPB1K5K2E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQtlst+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8KJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdjajhUijuo0DJu6nmNI4k70STu7nfeeLaiEQ94jTlYUxHSgwFo2glP8gbwaxfrbl1dwGyTryC1KBAq1/9CgYJy2KukElqTM9zUwxzqlEwyWeVIDM8pWxCR7xnqaIxN2G+OHZGLqwyIMNE21JIFurviZzGxkzjyHbGFMdm1ZuL/3m9DIc3YS5UmiFXbLlomEmCCZl/TgZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YCHiGV3hzlPPivDsfy9aSU8ycwh84nz+iS46O</latexit><latexit sha1_base64="Etv+2cKl/dI8Z53t0qDPB1K5K2E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQtlst+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8KJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdjajhUijuo0DJu6nmNI4k70STu7nfeeLaiEQ94jTlYUxHSgwFo2glP8gbwaxfrbl1dwGyTryC1KBAq1/9CgYJy2KukElqTM9zUwxzqlEwyWeVIDM8pWxCR7xnqaIxN2G+OHZGLqwyIMNE21JIFurviZzGxkzjyHbGFMdm1ZuL/3m9DIc3YS5UmiFXbLlomEmCCZl/TgZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YCHiGV3hzlPPivDsfy9aSU8ycwh84nz+iS46O</latexit><latexit sha1_base64="Etv+2cKl/dI8Z53t0qDPB1K5K2E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQtlst+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8KJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdjajhUijuo0DJu6nmNI4k70STu7nfeeLaiEQ94jTlYUxHSgwFo2glP8gbwaxfrbl1dwGyTryC1KBAq1/9CgYJy2KukElqTM9zUwxzqlEwyWeVIDM8pWxCR7xnqaIxN2G+OHZGLqwyIMNE21JIFurviZzGxkzjyHbGFMdm1ZuL/3m9DIc3YS5UmiFXbLlomEmCCZl/TgZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YCHiGV3hzlPPivDsfy9aSU8ycwh84nz+iS46O</latexit>

{1}
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Figure 2: A schematic with 3 arms and agents. At the beginning, the top, middle and bottom
agents are aware of arms 1,2 and 3 respectively, denoted by the set. The dots represent epochs of
the clock process at which the agents play an arm and may additionally choose to communicate
an arm. The arm-id played and communicated are denoted on the epochs and vertical arrows
respectively. The recipient of the communication, denoted by the head of the vertical arrows are
chosen uniformly at random. An agent, at each epoch only plays and recommends from among the
arms it is aware of.

Agent’s Actions - An action by an agent (which it makes at the epochs of its clock process)
consists of three quantities - (i) an arm among the set of K arms to play and obtain a reward
(where the observed reward is either a 0 or a 1), (ii) the choice of whether to initiate a pairwise
communication, (iii) and if so what message and to whom to communicate to. The message com-
municated by any agent, each time it does, must be O

(
log(nK)

)
bits long and must not either scale

with time or depend on the problem parameters such as arm means or gap ∆. Moreover, over T
total epochs of an agent where it played arms and collected rewards, it must have communicated
only o(T ) times. From henceforth, we use the term number of epochs to denote the number of times
an agent has played arms and collected rewards and time to refer to the continuous time during
which the agents’ clocks ring. Our system is decentralized, namely agents’ actions of which arm to
pull and whether to communicate and if so what and whom to communicate to must only depend
on the agent’s past history or arms pulled, rewards obtained and messages received.

Technical Setup - We suppose there exists a probability space (Ω,F ,P), which contains n i.i.d,
unit rate marked Poisson Point Processes (PPP), corresponding to the clocks for the agents. Each
epoch of each clock, has associated with it, three independent uniform [0, 1] valued random vari-
ables. The system’s sample path is then a measurable (i.e., deterministic) function of the set of
marked PPPs. The interpretation of this setup is as follows. Every agent i ∈ {n}, plays an arm at
the epochs of its clock process and the marks decide actions (whether to communicate and which
arm to play) and their outcomes (observed rewards and recipients of communication if any). The
action of every agent at every epoch of its clock must be measurable function of only its arms
played, observed rewards and received messages in the past. In the absence of messaging, every
agent is playing a standard MAB problem, where its action, which is just which arm to play, is
a measurable function of the past arms chosen and rewards obtained. The key new ingredient in
our setup is the active messaging, where agents can choose, based on the history of chosen arms,
observed rewards and received messages, the arm to play and the message to communicate, if at
all. Thus, our setting is distributed since an agent is not aware of the arms played and the rewards
obtained by other agents, but only has an indirect knowledge through the active messages received.
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2.2 Performance Metric

The main performance metric of interest is the average regret incurred by all agents. For any agent

i ∈ {1, · · · , n}, and m ∈ {1, · · · , }, denote by I(m)
i ∈ {1, · · · , n} to be the arm played by agent i, in

its mth epoch. The regret of any agent i, after it has played for T epochs is defined as

R
(T )
i =

T∑
t=1

(µ1 − µI(t)
i

)

This definition of regret is classical in the study of MAB. In this multi-agent scenario, we consider
minimizing the average regret experienced by all users or the per-user regret, which is given by

R(T ) := 1
n

∑n
i=1 E[R

(T )
i ], where the expectation is with respect to both the observed randomness

and the policy. We want to design algorithms in which agents minimize their own cumulative regret
while requiring as minimal a communication resources as possible.

2.3 Model Assumptions

Each agent can agree upon a common protocol to follow prior to execution. This could potentially
depend on the agent’s indices. We assume all agents are aware of a common non-trivial lower
bound ε on this arm-gap 0 < ε ≤ ∆, and use this information to make decisions. Nevertheless, our
proposed algorithm still executes if ε > ∆, and we verify that the degradation in performance of
our algorithm is minimal in this case through simulations in Section 6.

Such an assumption of known ∆, but unknown mean rewards (which is the setting in our case), is
used in several MAB settings (see the book of [37]) - for instance the classical ε-greedy algorithm
[53] or the UCB-A algorithm [3]. In the networked setting similar to ours, this assumption seems to
be standard ([54],[27]). Certain algorithms in [27] require an input parameter T , that depends on
the arm-gap ∆. However, it is known from [35],[13], that even if the forecaster knows the arm-gap

∆, the regret scales at-least as order Θ
(

log(T )
∆

)
[35]. Thus, the knowledge of arm-gap, does not

affect the complexity of the problem, at-least from the perspective of regret scaling in time.

3 Algorithm

The algorithm has four parameters, L,M, T0 ∈ N and α, the UCB parameter. The algorithm
evolves with the different agents being in different states or phases taking values in {−M,−M +
1, · · · , 0, 1, · · · }. At the beginning of execution, all agents start out in state −M , and as the
execution proceeds, they increment their phase by 1. In other words, the state of every agent is
non-decreasing with time. We say that an agent is in Early Phase, if its state is −1 or smaller, and
in Late Phase if its state is 0 or larger.

3.1 Notation

For each agent i ∈ {1, · · · , n} and phase j ∈ {−M, · · · }, we denote by A
(j)
i ⊆ {1, · · · ,K} to be

the set of arms agent i is aware of at the beginning of phase j. The algorithm is such that in any
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phase, an agent will only play from among the set of arms it is aware of. In our algorithm, every
agent, if it chooses to communicate, will only communicate arm ids. Thus, during the course of
execution of our algorithm, agents will receive arm ids as messages.

For an agent i ∈ [n] and phases j, k ∈ {−M, · · · }, denote by B
(j)
i ⊂ {1, · · · ,K}, the set of arms

received by agent i, while agent i is in phase j. At the start of phase j ≥ −M + 1, agent i updates

the set of arms it is aware of as A
(j)
i = A

(j−1)
i ∪ B(j−1)

i . In other words, agents update the set of
arms they are aware of only at the end of a phase. Agents agree upon an initial set of arms, i.e.,

A
(−M)
i is chosen before execution of the algorithm. Notice that the set of arms an agent is aware of

is non-decreasing, i.e., if for any j ∈ {−M, · · · , }, any agent i ∈ {1, · · · , n} and arm l ∈ {1, · · · , k},
l ∈ A(j)

i =⇒ ∀h ≥ j, l ∈ A(h)
i .

For any agent i ∈ {1, · · · , n}, any arm l ∈ A
(j)
i , and any k ∈ N, denote by N

(j)
l;i (k) the number

of times arm l was played by agent i during its first k plays (epochs) in phase j. If N
(j)
l;i (k) > 0,

denote by µ̂
(j)
l;i (k) the empirical estimate of the mean of arm l by agent i, using only the samples

collected in the first k plays of agent i in state j.

3.2 Algorithm Description

For any agent i ∈ {1, · · · , n}, its execution is defined as follows.

Initialization - At time t = 0 (i.e., at the beginning of phase −M), agent i ∈ {1, · · · , n} is aware

of arms A
(−M)
i ={(

idKn e mod K
)

+ 1, · · · ,
(
(i+ 1)dKn e − 1 mod K

)}
. Observe that the cardinality |A(−M)

i | =

dKn e.

Early-Phase - When agent i is in any phase j ∈ {−M, · · · ,−1}, it plays from among the arms in

A
(j)
i in round-robin fashion. Agent i is in any early phase j for precisely L times, i.e., for exactly L

epochs of its clock process Ci(·), before shifting to state j + 1. At the end of (L plays in) phase j,
agent i chooses another agent uniformly and independently at random, and communicates to it the

index (id) of the arm from A
(j)
i having the highest empirical mean based on the samples collected

during phase j.

Late-Phase - Agent i is in this late-phase, if its phase j ∈ {0, 1, · · · }. Agent i is in phase
j ∈ {0, 1, · · · } for exactly Tj epochs, where Tj := bT0

2 22jc − bT0
2 22j−1c, before shifting to phase

j + 1. At any play instant k ∈ [Tj ] of agent i in phase j, if there is an arm l ∈ A
(j)
i such that

N
(j)
l;i (k) = 0, it plays one such arm, chosen arbitrarily. If no such arm exists, agent i then plays an

arm chosen according to the UCB policy [4], i.e., the arm is chosen from the set

arg max
l∈A(j)

i

µ̂(j)
l;i (k − 1) +

√√√√ α log(k)

N
(j)
l;i (k − 1)

 .

Furthermore, for all late phases j ≥ 1, agent i communicates only for the first n2j epochs and
after that does not communicate. Agent i will communicate in phase j, the arm from the previous
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phase O
(j)
i ∈ A

(j−1)
i that was played the most number of times, with each communication attempt

directed at an uniform random agent.

3.3 Algorithm PseudoCode

For ease of readability, we translate the above description of our algorithm into pseudo-code in
Algorithm 1. This algorithm assumes access to a function called Communicate, that takes in an
arm-id ξ ∈ {1, · · · ,K} and an agent y ∈ {1, · · · , n} as input and sends arm-id ξ to an agent chosen
uniformly at random from {1, · · · , n} \ {y} and independently of everything else.

Algorithm 1 Distributed MAB Regret Minimization (at Agent i)

1: Input: M,L, T0, α
2: Initialization:
3: A

(−M)
i =

{(
idKn e mod K

)
+ 1, · · · ,

(
(i+ 1)dKn e − 1 mod K

)}
4: for Epochs t ∈ N of clock process Ci(·) do
5: if t ≤ML then . Early Phase
6: j ← t mod L . Current Phase number
7: if t mod L == 0 then . End of a Phase
8: Communicate(arg max

l∈A(i)
j

µ̂
(i,j)
l ,i)

9: A
(j+1)
i ← A

(j)
i ∪B

(j)
i

10: else
11: Play arm from A

(j)
i in round-robin

12: end if
13: else . Late Phase
14: j ← inf

{
m ≥ 0 : t ≤ML+ bT0

2 22mc
}

15: if t == ML+ bT0
2 22jc then . New Phase

16: A
(j+1)
i ← A

(j)
i ∪B

(j)
i

17: end if
18: if ∃l ∈ A(j)

i such that N
(j)
l;i = 0 then

19: Pull arm l
20: else

21: Pull - arg max
l∈A(j)

i

(
µ̂

(j)
l;i (t− 1) +

√
α log(k)

N
(j)
l;i (t−1)

)
22: end if
23: if t−ML− bT0

2 22jc ≤ n2j AND j ≥ 1 then

24: Communicate(arg max
l∈A(j−1)

i

N j−1
l;i (Tj−1) ,i) . The arm most played in the previous

phase (j − 1)
25: end if
26: end if
27: end for

9



3.4 Remarks on the Algorithm

The algorithm is ‘fully asynchronous’ in the sense that agents act independently without keeping
track of either a absolute continuous time, or a shared global system clock. Notice that in the
early-stage, every agent communicates exactly M times, which we will later set to be Θ(log(n))
in the sequel. In each late-stage j ≥ 1, an agent communicates for exactly n2j times. Since the
duration of each late-stage phase is doubly exponential, after T time steps of play of any agent, it
would have communicated order log(T ) number of times, where each communication is of log2(K)
bits.

One can potentially improve the algorithm, by using a black-box best arm identification in the early-
phase of an agent instead of playing arms in a round robin fashion. Concretely, if A is any best-arm
identification algorithm, then in each early phase j ∈ {−M, · · · ,−1}, each agent i ∈ {1, · · · , n},
will use the algorithm A on the set of arms A

(i)
j for at-most L total arm pulls. If at the end of

L arm pulls, either a best arm from A
(i)
j is identified which is communicated, or the algorithm A

fails to terminate within L steps, in which case a random arm from A
(i)
j will be communicated and

agent i moves to phase j + 1. Similarly, one could use a more sophisticated version of the UCB
algorithm ([37]) in the late phase and obtain slightly better results.

4 Main Result

Theorem 1. Consider a system with n ≥ 1 agents and K ≥ 2 arms, with each agent running the

above algorithm with parameters M = d361 log(n)e+ 1, L =

⌈
2M+dK

n
e

ε2
(18M) log(100(2M + dKn e))

⌉
and T0 = dmax(K2,n) log(ε−1)

ε2
e, UCB parameter α = 3 and , where 0 < ε ≤ ∆. Then for every agent

I ∈ {1, ..., n} and ∀T ∈ N, the regret after agent I has played for T epochs is bounded by

E[R
(T )
I ] ≤ 4α

∆
4(M̂) log(T − T0)1T>T0 +ML+ 8T0

(
150 log(n)

n3
1n≥29 + 1n<29

)
+

2 log2

(
log2

(
2T

T0

))(
4α

∆
log

(
T0

2

)
+ M̂

(
1 +

π2

3

))
1T≥T0 , (1)

where M̂ = 2M + d3K
n2 e + dKn e. Moreover, in T epochs of play, each agent communicates at-most

a total of M + n log(T/T0)1T≥T0 times.

To help parse the result, we consider the case of K = n in the following remarks to understand
how effectively our algorithm is leveraging the collaboration among agents.

Remark 2. In the case K = n and n > 29, Theorem 1 states that the expected regret of any agent

I after T epochs is O
( log(n)

∆ log(T ) + log3(n)
∆2 log log(n)

)
. We can compare this regret scaling with the

two benchmark systems of no communication and complete interaction described in Section 1.4. In
case agents do not interact at all, the per-agent regret is known ([35]) to scale as O

(
( n∆ log(T )

)
. In

the setting of complete information exchange however, from the discussion in Section 1.4 adapted to
the case K = n yields that the per agent regret scales as O

(
1
∆ log(T ) + log(n)

n∆

)
. Thus, our algorithm

is off by only by a logarithmic factor in n with respect to full coordination plus an additive constant

regret term of O
( log3(n) log log(n)

∆2

)
.
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Remark 3. Recall that in the fully centralized setting, the total number of times an agent commu-
nicates with the centralized server is T , if an agent plays for T epochs. This follows as for each
play of the agent, the centralized entity must communicate an arm-id for the agent to play which
will require at-least log2(n) bits and the agent reports back its observed samples which takes 1 bit.
However, in our algorithm, the total number of communications initiated by an agent in T epochs
is order log(T ), where each communication is at-most log2(n) (which is equal to log2(K) in this
example) bits, similar to the setting with complete information exchange.

Further, if the arm rewards are drawn from a more general sub-Gaussian distribution, the analysis
in this paper will go through with minor modifications, and both the regret scaling and communi-
cation scaling remains unchanged. However, this relaxation has implications on the communication
complexity with a centralized algorithm. Specifically, each agent needs to encode and communicate
the arm reward at a sufficient resolution to distinguish between the best and next best arm mean,
which will take an additional Θ(1/∆) bits (assuming ∆ is known) per message.

Thus, our algorithm is able to effectively emulate the complete interaction setting using only pair-
wise anonymous asynchronous gossip-style communications with much smaller communication com-
plexity.

Remark 4. We note that the constants in front of M and L is sub-optimal as it arose from certain
tail probability bounds which are not tight. In all simulations in this paper, we set M = d3 log(n)e+1

and L = d0.82M+dK
n
e

ε2
log(10(2M + dKn e)ε)e. We see from our plots in Figures 1, 4 and 5, that this

choice works well in practice.

Remark 5. The choice of the parameter ε, appears from Theorem 1 to crucially affect the perfor-
mance of our algorithm. However, we see numerically in Section 6, that our algorithm enjoys good
performance for a range of values of ε, even if ε > ∆.

Remark 6. The initialization in Line 3 of Algorithm 1 requires agents to be aware of their index,
which may not be feasible in many scenarios. The following simple modification to Line 3 can
make our algorithm fully distributed. Given any positive γ ∈ (0, 1), each agent i ∈ {1, · · · , n},

will construct its initial set A
(−M)
i , by choosing Mγ :=

⌈
ln
(

1
γ

)
n ln( k

k−1)

⌉
arms from the set {1. · · · ,K},

uniformly at random with replacement. Then, with probability at-least 1 − γ, there will exist an

agent j ∈ {1, · · · , n} such that 1 ∈ A(−M)
j , i.e., the best arm is in some agent’s initial playing set.

On this event, the regret of any agent I ∈ {1, · · · , n} after playing for T time steps will satisfy

E[R
(T )
I ] ≤ 4α

∆
4(M̂ +Mγ) log(T − T0)1T>T0 +ML+ 8T0

(
150 log(n)

n3
1n≥29 + 1n<29

)
+

2 log2

(
log2

(
2T

T0

))(
4α

∆
log

(
T0

2

)
+ (M̂ +Mγ)

(
1 +

π2

3

))
1T≥T0 . (2)

All occurrences of M̂ is replaced by M̂ +Mγ.

4.1 Discussion

The per-user regret bound in Equation (1) implies several objectives accomplished by the algo-
rithm. First, it establishes that every agent will play the best arm eventually with probability 1.
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For if an agent did not play the best arm ever with some probability δ > 0, then the per-user regret
has a lower bound of δ

nT , which for fixed n, the scaling in time is not logarithmic. Second, since
an agent only chooses arms from the set of arms it is aware of, the regret bound also implies that
on average, a typical agent plays at-most order log(n) number of arms. These two properties of
(i) every agent being aware of the best arm, while (ii) playing a total of order log(n) number of
distinct arms illustrates the key benefit of collaborative messaging. In words, collaboration spreads
the best arm to all other agents while not spreading the poor arms, so that not all agents need to
learn and discard the poorly performing arms.

Furthermore, observe that our regret bound has an additive term that scales as log3(n)
∆2 . This additive

term can be viewed as a cost of collaboration through the gossip noisy process. As nodes only play
from the set of arms they are aware, a node may not play the best arm until it is recommended
and will keep incurring a regret linear with time. However, from well known results ([28]), it takes
an agent at-least order ∆−2 epochs to identify the best arm with a constant probability and thus

to communicate it through the gossip process. Thus, the term log3(n)
∆2 is the average time before a

typical agent is aware of the best arm and starts playing it. We refer the reader to Appendix D for
more discussion.

4.2 Algorithm Intuition and Challenges in Analysis

Our goal is to design an algorithm so that all agents become aware of the best arm as quickly as
possible, since agents will incur a linearly scaling regret until they become aware of the best arm.
Thus, we conceptually, divide the evolution of the algorithm into two stages: an early stage and a
late stage.

The early stage: In this stage, gossip and best arm identification dominates, where the goal is
to ensure all agents have identified the best arm, but simultaneously making sure that each agent
is only aware of and has explored a small fraction of the arms. The tension is the following: When
not all agents are even aware of the best arm, agents must aggressively spread or communicate what
they estimate as their current best arm. However, if agents communicate too frequently, then their
estimates are likely to be poor, as they will be based on too few samples, thus leading to both in-
creased communications and bad recommendations (resulting in all agents being aware of too many
arms and leading to poor regret scaling).

The late stage: As time progresses when all agents are reasonably sure of being aware of the
best arm, agents must start focusing on regret minimization rather than estimating best arms.
However, since we want to ensure that all agents are aware of the best arm eventually with proba-
bility 1, agents must nevertheless keep communicating. In particular, almost-surely, all agents must
eventually make infinite recommendations as time progresses, while only making small and finitely
many incorrect recommendations. Thus, the late-stage must be designed to balance two competing
objectives. (i) In the rare case that not all agents are aware of the best arm when they shift to the
late-stage, they must become aware of the best arm quickly and, (ii) in the typical case when all
agents are aware of the best arm at the beginning of the late-phase, the number of new arms an
agent becomes aware of in the late-stage must be small. The second objective is desirable as all
newly aware arms in the late-phase, conditioned on agents being aware of the best arm at the end
of the early-phase will necessarily be sub-optimal arms.
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Recommendations - In our algorithm, we decouple the samples (reward of arm pulls) on which
agents make successive recommendations, both in the early as well as late phases. This allows us to
claim that the quality of recommendations by an agent are independent across phases, which aids
greatly in the analysis. This decoupling also ensures that the quality of recommendations made by
agents be independent of the regret an agent obtains on its samples. We achieve this independence
by using the doubling trick [9] in the late-phase and using the performance of an agent in the
phase before to make recommendations in the current phase. Contrary to the main uses of the
doubling method in converting a fixed horizon algorithm into a anytime algorithm, we use this to
provide the necessary sample splitting, between making recommendations and minimizing regret.
This decoupling comes at a price however which shows up as an additive Θ(log(log(T ))) term in
the regret.

The parameter ε in our algorithm: Observe that the algorithm needs 0 < ε ≤ ∆ for the regret
guarantees to hold. Furthermore, the closer this parameter is to ∆, the better is our regret bound,
evidenced both by our Theorem 1 and simulations in Section 6. However, we show empirically in
Section 6, that even if ε > ∆, in practice our algorithm yields good performance and leverages the
benefit of collaboration.

The knowledge of ∆ is particularly helpful to agents in deciding when to make recommendations,
i.e., the choice of both L and T0. If an agent recommends too early in the early stage, say much
smaller than playing ∆−2 times in total, then such a recommendation will likely be wrong. One
potential method to remove requiring knowledge of ∆ would be for agents to run a fixed-confidence
best arm identification algorithm (e.g. see [29] and references therein) before making recommen-
dations. However, such a modification to our algorithm is not guaranteed to work. To see this,
consider a problem instance where µ2 − µ3 << µ1 − µ2 := ∆, with all agents being aware of arms
2 and 3 in the beginning. In the early phase of the algorithm when not all agents are aware of
the best arm, those that are not aware of the best arm (but have arms 2 and 3) will spend a large
number of samples in order to distinguish between these two arms. Thereby, these agents will stay
in the early phase for a long time, thus incurring a large regret. However, as neither of these are
the best arm, it does not matter which of these two arms is recommended, and hence agents could
have used fewer samples and have saved on incurring regret.

We remark here that this assumption seems to be made for many algorithms developed to leverage
collaboration in a networked setting. As mentioned, the simple regret counterpart to our cumulative
regret in a networked setting considered in [27] and [54] assume knowledge of ∆ for their algorithms.
For instance, algorithms of [27] require T , an input parameter to be larger than a certain function
of ∆, while [54] requires an explicit lower bound on ∆ similar to ours.

5 Proof Sketch

We identify certain nice behaviour which occurs with high probability (w.h.p). Set δ = 1
3M . We

call the system Good, if the following events occur.

• Event E1 - All agents are aware of the best arm by time (M − 1)L(1 + δ).
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• Event E2 - The total number of times any agent is ever contacted by another agent j when j
is in the early phase, i.e., j is in state −1 or lower is at-most 2M − 2.

• Event E3 - By time (M − 1)L(1 + δ), all agents are in phase −1 or lower.

Notice that every agent will play the best arm in phases 0 and beyond, if the Good event holds,
as all agents are aware of the best arm by at-most phase −1. We will show in Lemma 7, that the
system is Good w.h.p.

5.1 Late-Stage Analysis

We split the regret as the sum of three terms - (i) Regret in the early phase, which will be linear
as agents are only doing best-arm identification, (ii) - Regret in the late-phase due to playing the
UCB algorithm with the doubling trick and (iii) Linear regret in the late-phase until an agent
becomes aware of the best arm, if it is not aware of the best arm at the beginning of the late phase.
The first term is trivial as we will assume that all agents incur a worst case regret of 1 in each of its
early phase epoch. The main challenge in computing the second term is that the number of arms
an agent is aware of in any late-stage is a random variable and not fixed. However, the regret of an
agent conditional on the number of arms is easy to compute, as it follows directly from [4]. The key
idea here is to notice that conditioning on the number of arms an agent is aware of at the beginning
of a phase, has no effect on the regret incurred by an agent during the phase in consideration.
This is so as we do not re-use samples across phases to keep track of estimates on arm means. As
the regret conditional on the number of arms, scales linearly in the number of arms, it suffices to
separately evaluate just the mean number of arms an agent is aware of at the beginning of a phase.
This is done in Propositions 16 and 17. To evaluate the third term, we upper bound the time it
takes for an agent to learn the best arm by the time it takes by agent 1 to recommend the best
arm. We show this in Propositions 12, 13, 14 and 15, that the average number of epochs an agent
has to wait in the late-stage before being recommended the best arm by agent 1 is ‘small’.

5.2 Early-Stage Analysis

We establish in Lemma 7 proven in Section B, that the system is Good with probability at-least
1 − 150n−3. The probabilities of events E2 and E3 are straightforward to deduce from Chernoff
tail bounds which we do in Lemmas 18 and 19 respectively. Concluding about the probability of
event E1 is the key technical innovation where the difficulty stems from the following reason. We
need to first condition on event E2, as that will imply that all agents in the early stage make a
recommendation from among at-most 2M other arms. By the choice of L, and known results from
[14] reproduced as Lemma 20, conditional on event E2, agents that possess the best arm recommend
it with probability at-least 99/100. However, conditioning on event E2 induces correlations on the
agent ids that receive the messages and hence makes the spreading process difficult to analyze
directly, as the recipients are no longer independent conditional on E2.

We proceed by considering and analyzing a fictitious virtual system which is identical to our algo-
rithm in the early stage with a crucial modification that agents in this fictitious system will drop
arms if it at any point it is aware of 2M + 1 or more arms. However, agents in this virtual system
will not drop the best arm once it becomes aware of it. Note that this is only a mathematical
stochastic process under consideration and hence we can assume that the agents in this virtual
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<latexit sha1_base64="ZIN6rai7BSnRDMed0xjzOMdcMgw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCFw8iVewHtKFstpN26WYTdjdCCf0HXjwo4tV/5M1/47bNQVsfDDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hrmt59QaR7LRzNJ0I/oUPKQM2qs9FC77ZcrbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n80vnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzN4mA66QGTGxhDLF7a2EjaiizNhwSjYEb/nlVdKqVT236t1fVOp3eRxFOIFTOAcPLqEON9CAJjAI4Rle4c0ZOy/Ou/OxaC04+cwx/IHz+QMYEo0Y</latexit><latexit sha1_base64="ZIN6rai7BSnRDMed0xjzOMdcMgw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCFw8iVewHtKFstpN26WYTdjdCCf0HXjwo4tV/5M1/47bNQVsfDDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hrmt59QaR7LRzNJ0I/oUPKQM2qs9FC77ZcrbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n80vnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzN4mA66QGTGxhDLF7a2EjaiizNhwSjYEb/nlVdKqVT236t1fVOp3eRxFOIFTOAcPLqEON9CAJjAI4Rle4c0ZOy/Ou/OxaC04+cwx/IHz+QMYEo0Y</latexit><latexit sha1_base64="ZIN6rai7BSnRDMed0xjzOMdcMgw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCFw8iVewHtKFstpN26WYTdjdCCf0HXjwo4tV/5M1/47bNQVsfDDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hrmt59QaR7LRzNJ0I/oUPKQM2qs9FC77ZcrbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n80vnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzN4mA66QGTGxhDLF7a2EjaiizNhwSjYEb/nlVdKqVT236t1fVOp3eRxFOIFTOAcPLqEON9CAJjAI4Rle4c0ZOy/Ou/OxaC04+cwx/IHz+QMYEo0Y</latexit><latexit sha1_base64="ZIN6rai7BSnRDMed0xjzOMdcMgw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCFw8iVewHtKFstpN26WYTdjdCCf0HXjwo4tV/5M1/47bNQVsfDDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hrmt59QaR7LRzNJ0I/oUPKQM2qs9FC77ZcrbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n80vnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzN4mA66QGTGxhDLF7a2EjaiizNhwSjYEb/nlVdKqVT236t1fVOp3eRxFOIFTOAcPLqEON9CAJjAI4Rle4c0ZOy/Ou/OxaC04+cwx/IHz+QMYEo0Y</latexit>L

<latexit sha1_base64="o+jdJG23WWT1a+ax60etfamynNU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBiweRFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVsfDDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmt59QaR7LBzNJ0I/oUPKQM2qs1Ljrlytu1Z2DrBIvJxXIUe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzQ+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCaz/jMkkNSrZYFKaCmJjMviYDrpAZMbGEMsXtrYSNqKLM2GxKNgRv+eVV0rqoem7Va1xWavd5HEU4gVM4Bw+uoAa3UIcmMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AacljNw=</latexit><latexit sha1_base64="o+jdJG23WWT1a+ax60etfamynNU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBiweRFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVsfDDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmt59QaR7LBzNJ0I/oUPKQM2qs1Ljrlytu1Z2DrBIvJxXIUe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzQ+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCaz/jMkkNSrZYFKaCmJjMviYDrpAZMbGEMsXtrYSNqKLM2GxKNgRv+eVV0rqoem7Va1xWavd5HEU4gVM4Bw+uoAa3UIcmMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AacljNw=</latexit><latexit sha1_base64="o+jdJG23WWT1a+ax60etfamynNU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBiweRFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVsfDDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmt59QaR7LBzNJ0I/oUPKQM2qs1Ljrlytu1Z2DrBIvJxXIUe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzQ+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCaz/jMkkNSrZYFKaCmJjMviYDrpAZMbGEMsXtrYSNqKLM2GxKNgRv+eVV0rqoem7Va1xWavd5HEU4gVM4Bw+uoAa3UIcmMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AacljNw=</latexit><latexit sha1_base64="o+jdJG23WWT1a+ax60etfamynNU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBiweRFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVsfDDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Gbmt59QaR7LBzNJ0I/oUPKQM2qs1Ljrlytu1Z2DrBIvJxXIUe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzQ+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCaz/jMkkNSrZYFKaCmJjMviYDrpAZMbGEMsXtrYSNqKLM2GxKNgRv+eVV0rqoem7Va1xWavd5HEU4gVM4Bw+uoAa3UIcmMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AacljNw=</latexit>
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<latexit sha1_base64="USoneuk7u4nNI33ppBoDaycjRHA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBiyepYD+gDWWz2bRrN9mwOxFK6H/w4kERr/4fb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2Z+54lrI1TygJOU+zEdJiISjKKV2v2QS6SDas2tu3OQVeIVpAYFmoPqVz9ULIt5gkxSY3qem6KfU42CST6t9DPDU8rGdMh7liY05sbP59dOyZlVQhIpbStBMld/T+Q0NmYSB7Yzpjgyy95M/M/rZRhd+7lI0gx5whaLokwSVGT2OgmF5gzlxBLKtLC3EjaimjK0AVVsCN7yy6ukfVH33Lp3f1lr3BVxlOEETuEcPLiCBtxCE1rA4BGe4RXeHOW8OO/Ox6K15BQzx/AHzucPlSiPKA==</latexit><latexit sha1_base64="USoneuk7u4nNI33ppBoDaycjRHA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBiyepYD+gDWWz2bRrN9mwOxFK6H/w4kERr/4fb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2Z+54lrI1TygJOU+zEdJiISjKKV2v2QS6SDas2tu3OQVeIVpAYFmoPqVz9ULIt5gkxSY3qem6KfU42CST6t9DPDU8rGdMh7liY05sbP59dOyZlVQhIpbStBMld/T+Q0NmYSB7Yzpjgyy95M/M/rZRhd+7lI0gx5whaLokwSVGT2OgmF5gzlxBLKtLC3EjaimjK0AVVsCN7yy6ukfVH33Lp3f1lr3BVxlOEETuEcPLiCBtxCE1rA4BGe4RXeHOW8OO/Ox6K15BQzx/AHzucPlSiPKA==</latexit><latexit sha1_base64="USoneuk7u4nNI33ppBoDaycjRHA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBiyepYD+gDWWz2bRrN9mwOxFK6H/w4kERr/4fb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2Z+54lrI1TygJOU+zEdJiISjKKV2v2QS6SDas2tu3OQVeIVpAYFmoPqVz9ULIt5gkxSY3qem6KfU42CST6t9DPDU8rGdMh7liY05sbP59dOyZlVQhIpbStBMld/T+Q0NmYSB7Yzpjgyy95M/M/rZRhd+7lI0gx5whaLokwSVGT2OgmF5gzlxBLKtLC3EjaimjK0AVVsCN7yy6ukfVH33Lp3f1lr3BVxlOEETuEcPLiCBtxCE1rA4BGe4RXeHOW8OO/Ox6K15BQzx/AHzucPlSiPKA==</latexit><latexit sha1_base64="USoneuk7u4nNI33ppBoDaycjRHA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBiyepYD+gDWWz2bRrN9mwOxFK6H/w4kERr/4fb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR26hMM95iSirdDajhUiS8hQIl76aa0ziQvBOMb2Z+54lrI1TygJOU+zEdJiISjKKV2v2QS6SDas2tu3OQVeIVpAYFmoPqVz9ULIt5gkxSY3qem6KfU42CST6t9DPDU8rGdMh7liY05sbP59dOyZlVQhIpbStBMld/T+Q0NmYSB7Yzpjgyy95M/M/rZRhd+7lI0gx5whaLokwSVGT2OgmF5gzlxBLKtLC3EjaimjK0AVVsCN7yy6ukfVH33Lp3f1lr3BVxlOEETuEcPLiCBtxCE1rA4BGe4RXeHOW8OO/Ox6K15BQzx/AHzucPlSiPKA==</latexit>

2�
<latexit sha1_base64="auiUvuODxINNPDrZBGZZ9si1QUA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF09SwX5AG8pms2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBakUBl332yltbG5t75R3K3v7B4dH1eOTjkkyzXibJTLRvYAaLoXibRQoeS/VnMaB5N1gcjv3u09cG5GoR5ym3I/pSIlIMIpW6jYGIZdIh9WaW3cXIOvEK0gNCrSG1a9BmLAs5gqZpMb0PTdFP6caBZN8VhlkhqeUTeiI9y1VNObGzxfnzsiFVUISJdqWQrJQf0/kNDZmGge2M6Y4NqveXPzP62cY3fi5UGmGXLHloiiTBBMy/52EQnOGcmoJZVrYWwkbU00Z2oQqNgRv9eV10mnUPbfuPVzVmvdFHGU4g3O4BA+uoQl30II2MJjAM7zCm5M6L86787FsLTnFzCn8gfP5AwcZj2Q=</latexit><latexit sha1_base64="auiUvuODxINNPDrZBGZZ9si1QUA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF09SwX5AG8pms2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBakUBl332yltbG5t75R3K3v7B4dH1eOTjkkyzXibJTLRvYAaLoXibRQoeS/VnMaB5N1gcjv3u09cG5GoR5ym3I/pSIlIMIpW6jYGIZdIh9WaW3cXIOvEK0gNCrSG1a9BmLAs5gqZpMb0PTdFP6caBZN8VhlkhqeUTeiI9y1VNObGzxfnzsiFVUISJdqWQrJQf0/kNDZmGge2M6Y4NqveXPzP62cY3fi5UGmGXLHloiiTBBMy/52EQnOGcmoJZVrYWwkbU00Z2oQqNgRv9eV10mnUPbfuPVzVmvdFHGU4g3O4BA+uoQl30II2MJjAM7zCm5M6L86787FsLTnFzCn8gfP5AwcZj2Q=</latexit><latexit sha1_base64="auiUvuODxINNPDrZBGZZ9si1QUA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF09SwX5AG8pms2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBakUBl332yltbG5t75R3K3v7B4dH1eOTjkkyzXibJTLRvYAaLoXibRQoeS/VnMaB5N1gcjv3u09cG5GoR5ym3I/pSIlIMIpW6jYGIZdIh9WaW3cXIOvEK0gNCrSG1a9BmLAs5gqZpMb0PTdFP6caBZN8VhlkhqeUTeiI9y1VNObGzxfnzsiFVUISJdqWQrJQf0/kNDZmGge2M6Y4NqveXPzP62cY3fi5UGmGXLHloiiTBBMy/52EQnOGcmoJZVrYWwkbU00Z2oQqNgRv9eV10mnUPbfuPVzVmvdFHGU4g3O4BA+uoQl30II2MJjAM7zCm5M6L86787FsLTnFzCn8gfP5AwcZj2Q=</latexit><latexit sha1_base64="auiUvuODxINNPDrZBGZZ9si1QUA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF09SwX5AG8pms2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBakUBl332yltbG5t75R3K3v7B4dH1eOTjkkyzXibJTLRvYAaLoXibRQoeS/VnMaB5N1gcjv3u09cG5GoR5ym3I/pSIlIMIpW6jYGIZdIh9WaW3cXIOvEK0gNCrSG1a9BmLAs5gqZpMb0PTdFP6caBZN8VhlkhqeUTeiI9y1VNObGzxfnzsiFVUISJdqWQrJQf0/kNDZmGge2M6Y4NqveXPzP62cY3fi5UGmGXLHloiiTBBMy/52EQnOGcmoJZVrYWwkbU00Z2oQqNgRv9eV10mnUPbfuPVzVmvdFHGU4g3O4BA+uoQl30II2MJjAM7zCm5M6L86787FsLTnFzCn8gfP5AwcZj2Q=</latexit>

3�
<latexit sha1_base64="whkaipOxk8NTjeapQMWg5GkHWEc=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPBiyepYD+gDWWzmbRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZ5tDiiUx0N2AGpFDQQoESuqkGFgcSOsH4duZ3nkAbkahHnKTgx2yoRCQ4Qyt1LvshSGSDas2tu3PQVeIVpEYKNAfVr36Y8CwGhVwyY3qem6KfM42CS5hW+pmBlPExG0LPUsViMH4+P3dKz6wS0ijRthTSufp7ImexMZM4sJ0xw5FZ9mbif14vw+jGz4VKMwTFF4uiTFJM6Ox3GgoNHOXEEsa1sLdSPmKacbQJVWwI3vLLq6R9UffcuvdwVWvcF3GUyQk5JefEI9ekQe5Ik7QIJ2PyTF7Jm5M6L86787FoLTnFzDH5A+fzBwijj2U=</latexit><latexit sha1_base64="whkaipOxk8NTjeapQMWg5GkHWEc=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPBiyepYD+gDWWzmbRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZ5tDiiUx0N2AGpFDQQoESuqkGFgcSOsH4duZ3nkAbkahHnKTgx2yoRCQ4Qyt1LvshSGSDas2tu3PQVeIVpEYKNAfVr36Y8CwGhVwyY3qem6KfM42CS5hW+pmBlPExG0LPUsViMH4+P3dKz6wS0ijRthTSufp7ImexMZM4sJ0xw5FZ9mbif14vw+jGz4VKMwTFF4uiTFJM6Ox3GgoNHOXEEsa1sLdSPmKacbQJVWwI3vLLq6R9UffcuvdwVWvcF3GUyQk5JefEI9ekQe5Ik7QIJ2PyTF7Jm5M6L86787FoLTnFzDH5A+fzBwijj2U=</latexit><latexit sha1_base64="whkaipOxk8NTjeapQMWg5GkHWEc=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPBiyepYD+gDWWzmbRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZ5tDiiUx0N2AGpFDQQoESuqkGFgcSOsH4duZ3nkAbkahHnKTgx2yoRCQ4Qyt1LvshSGSDas2tu3PQVeIVpEYKNAfVr36Y8CwGhVwyY3qem6KfM42CS5hW+pmBlPExG0LPUsViMH4+P3dKz6wS0ijRthTSufp7ImexMZM4sJ0xw5FZ9mbif14vw+jGz4VKMwTFF4uiTFJM6Ox3GgoNHOXEEsa1sLdSPmKacbQJVWwI3vLLq6R9UffcuvdwVWvcF3GUyQk5JefEI9ekQe5Ik7QIJ2PyTF7Jm5M6L86787FoLTnFzDH5A+fzBwijj2U=</latexit><latexit sha1_base64="whkaipOxk8NTjeapQMWg5GkHWEc=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPBiyepYD+gDWWzmbRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZ5tDiiUx0N2AGpFDQQoESuqkGFgcSOsH4duZ3nkAbkahHnKTgx2yoRCQ4Qyt1LvshSGSDas2tu3PQVeIVpEYKNAfVr36Y8CwGhVwyY3qem6KfM42CS5hW+pmBlPExG0LPUsViMH4+P3dKz6wS0ijRthTSufp7ImexMZM4sJ0xw5FZ9mbif14vw+jGz4VKMwTFF4uiTFJM6Ox3GgoNHOXEEsa1sLdSPmKacbQJVWwI3vLLq6R9UffcuvdwVWvcF3GUyQk5JefEI9ekQe5Ik7QIJ2PyTF7Jm5M6L86787FoLTnFzDH5A+fzBwijj2U=</latexit>

Figure 3: A schematic depicting the almost-discrete behaviour of the algorithm, where agents make
a recommendation every 3rd epoch. We will establish in Lemma 24, that w.h.p., all agents make
their ith early stage recommendation in the interval [il(1− δ), iL(1 + δ)], for all i ∈ [1,M ].

system know the best arm’s index. We show in Lemma 21, that w.h.p., this virtual system has
identical sample paths as our algorithm upto time (M − 1)L(1 + δ).

We study the virtual system by a reduction to a discrete time rumor mongering process. Specifically,
we will establish in Lemma 24, that agents in this virtual system are ‘in sync’, i.e., for all j ∈ [M ],
no agent makes its (j + 1)th recommendation, before all other agents finish making their jth
recommendation (See also Figure 3). We notice that the discrete rumor mongering process we obtain
is a variation of the classical rumor spreading on [24] and [42], with two important distinctions.
First, in our discrete time model, an agent only spreads the rumor after a one time slot delay after
receiving the rumor. Second, each spreading attempt of an agent in each time slot, is successful
with probability 99/100, as opposed to always being successful in [24]. We show in Theorem 25,
that the total spreading time for this process is order log(n) with high probability. We provide a
simple proof of the spreading time in Theorems 25 and 27, which could be of independent interest.
This enables us to conclude that event E1 holds w.h.p. for the virtual system, which in turn implies
it holds w.h.p. for our algorithm, as the virtual system and our algorithm have identical sample
paths upto time (M − 1)L(1 + δ) w.h.p..

6 Numerical Results

We empirically evaluate the performance of our algorithm and in particular highlight the gains due
to collaboration in reducing per-agent regret. Throughout this section, we use M = d2.5 log(n)e+1

and dL = 0.8
2M+dK

n
e

ε2
log(20(2M + dKn e))e. This is different from that mentioned in our Theorem

1 as the constants there arise from certain tail probability bounds that are not tight.

6.1 Synthetic Data

We evaluate the performance of our algorithm in Figure 4. For each case of ∆, n and K, we sample
the arm means uniformly in the range (0.4, 0.85−∆) and the best arm has mean 0.85. To be com-
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Figure 4: The system parameters (n,K) from left to right are (20, 50), (30, 60), (40, 60) respectively.
The top row corresponds to ∆ = 0.2 and the bottom row ∆ = 0.1.

prehensive, we test our algorithm with instance settings ∆ ∈ {0.1, 0.2} and the number of arms and
agent pairs of (n, k) = {(20, 50), (30, 60), (40, 60)}. We vary the input parameter ε of our algorithm
and compare the performance of our algorithm against the two benchmarks stated in Section 1.4,
namely a system with no interaction and a system with perfect interaction. The no interaction
system corresponds to a single agent playing the MAB following the UCB(2) algorithm of [4]. The
perfect interaction benchmark is one wherein when an agent’s clock ticks, it has access to the entire
system history and chooses an arm according to the UCB(2) algorithm using the entire history. In
each plot, we first sample the arm means and then do 10 random runs and plot the average over
these runs along with 95% confidence intervals.

Results - We see from Figure 4 that our proposed algorithm, is both practically scalable to large
systems and effective in leveraging the collaborations to significantly reduce the per-agent regret
compared to the case of no collaborations. Even with small ε, our algorithm has much smaller regret
growth eventually compared to the setting of no collaboration. Moreover, there is still substantial
performance gain in regret when the input parameter ε of our algorithm is varied. Note that the
theoretical guarantees in Theorem 1 only holds if ε < ∆ while in practice (as seen in Figure 4) our
algorithm performs well even if ε > ∆.

6.2 Simulations with Real Data

We consider the Movielens 1M data [25] to run our algorithm. This dataset has 4k users and
6k movies. We selected a user category, corresponding to same gender, age and occupation. We
ensured that there are at-least 150 users in each category. We then considered a subset of movies
such that each user rated at-least 30 of those movies and each movie is rated by at-least 30 of these
users. We extract out this submatrix and run standard matrix completion [26] to fill the missing
details. We then averaged each column and divided this average by 5. This then forms the mean
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Figure 5: The plot of regret in Movielens data. The figures from left to right comprise systems
with (n,K) as (20, 200), (25, 220), (30, 240) respectively. The average number of arms an agent was
aware of by the end of simulation window were 15.5, 14.8, 14.1 respectively

rating normalized to [0, 1] of this movie in this user group. This set of normalized scores for movies
are used as arm-means, where each movie corresponds to an arm. In figure 5, we run our algorithm
with this arm-means and a common parameter of ε = 0.05. In each plot of Figure 5, we randomly
sample a collection of movies satisfying the above property, and then do 10 random runs and plot
the average over these runs along with 95% confidence intervals. The confidence bars are smaller
than the size of markers on plot.

Results - We see from Figure 5, that even for large systems, our algorithm reaps benefits of
collaboration. In particular, since the number of arms is large (200 or more), single agent UCB is
incurring linear regret in the simulation window, while our algorithm has gone into the late phase
and has a sub-linear regret growth much earlier. This is because, in all experiments our algorithm
is only exploring much smaller number of sub-optimal arms (under 16 in all cases as described
in Figure 5) compared to the standard UCB. Moreover, the arm gap in all of the plots are 0.01
or smaller (note the arms were randomly selected for each plot), yet our parameter of ε = 0.05
performs quite well, implying that our algorithm is quite robust.

7 Related Work

Our work focuses on multi-armed bandit (MAB) [56, 13] problems in a multi-agent setting, which
has received increasing attention in a number of applications. The earliest work in this direction
is [7], which consider an adversarial bandit model with malicious agents. This setting was further
developed in [17], with delays in communication among agents which were connected by a gen-
eral graph. However, there are no restrictions on the communications and agents in these models
could communicate after every arm-pull. Subsequently, [31], studies the communication versus
regret trade-off in a distributed setting with non-stochastic bandits. However, their model does
not impose pairwise communication, rather agents communicate via a central coordinator. In the
non-stochastic setting, [45] introduces interactions across agents as limited advice from experts and
thus different from our setting.

In the stochastic bandit setting, the papers [19], [15] studies the trade-off between communication
cost and regret minimization among a team of bandits. However, in these models, agents can
simultaneously share information with all others and thus different from the pairwise communication
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setting of this paper. The models in [33], [40] consider a multi-agent setup in which neighbors
a bandit optimization on a social network, where the action and reward of an agent can be ob-
served by neighbors on a graph. However that model does not have a notion of However, there is
no notion of communications versus regret trade-off as agents communicate to their neighbors at
all time steps in their model. A recent work of [40] considered a multi agent setup where agents
can choose to communicate with all neighbors on an underlying unknown graph. However, agents
in their algorithm communicate after each arm-pull and thus do not have a communications versus
regret trade-off.

There has also been work ([27],[54]) in understanding the communication versus simple regret
(pure explore) trade-off for best arm identification, which is different from the cumulative regret
(explore-exploit trade-off) considered in this paper. Moreover, information sharing in these models
are different from ours - the communication model of [27] is one where every node can see every
other node’s message, whereas the agents in [54] can communicate at each time step and hence
the communications per agent is linear in the number of arm-pulls. However, similar to our paper,
both these papers require some knowledge of the arm-gap ∆. The algorithm of [27] is guaranteed
to work if the time horizon T , which is an input parameter, exceeds a function of ∆, while the
algorithm in [54] requires an explicit lower bound on ∆.

The paper [36] considers a distributed bandit setting where agents communicate arm means using
a consensus algorithm without any communication limitations, unlike our setting. There has also
been a line of work ([39], [43], [5], [30], [10], [1]) where the agents are competitive, unlike our setting,
and interact only indirectly by observing each others’ rewards. The paper of [49] considers a model
with different arm means for agents. In each time-step, a single action is taken by the network
as a whole through voting process unlike ours where each agent takes an action. The paper [18]
considers a single centralized learner that is playing multiple contextual bandit instances, where
each instance corresponds to a user on a graph. The graph encodes interactions where ‘nearby
users’ on the graph have ‘similar’ contextual bandit instances, different from interactions in our
model. Recent works [51], [16] have considered the social learning problem where agents do best-
arm identification (simple regret). In these setups, the memory of an agent is limited, and hence
standard bandit algorithms such as UCB is infeasible. Rather agents resort to simpler algorithms
such as the replicator dynamics and thus, their algorithmic paradigm is not applicable to our setting.

Developments in large scale distributed computing is prompting the study of other learning ques-
tions in a decentralized setting. For instance [22], [48], [41], [12], [44], [50], study multi-agent
convex optimization with gossip style communications. More classically, gossip based computation
models has a rich line of history under the name of population protocols [2] and rumor spreading
([21], [32]). We refer the reader to [47] and related references for other applications of the gossip
mechanism.

8 Conclusion and Open Problems

In this paper, we study a problem of collaborative learning when there are a group of agents play-
ing the same instance of the MAB problem. We demonstrate that even with limited collaboration,
the per agent regret is much smaller when compared to the case when agents do not collaborate.
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The paper however motivates several open questions. An immediate question is how to design an
algorithm in which the agents are not aware of the arm-gap ∆. This is particularly challenging
since an agent is not aware of when to make recommendations, i.e., agents must balance both best-
arm identification as well minimizing simple regret. Even the state of art, best-arm identification
algorithms in a networked setting also needs knowledge of ∆ ([27],[54]). Another question that
arises from our work is to understand other algorithmic paradigms to exploit collaboration. In
this paper, we considered the scenario where agents only play from among the arms it is aware of,
where collaboration is key to expanding the set of arms an agent is aware of. Are there natural
protocols, where the set of arms an agent is aware of can be modeled in a ‘soft’ fashion, where
agents prefer to play those arms that has been recommended to it more than other arms that have
been recommended fewer number of times. This is a challenging problem, both from an algorithmic
design perspective and also from a mathematical stand point. Third, can Theorem 27 be tightened
to get precise limiting theorems similar to those obtained in [24] and [42]. Such a result will help
in reducing the constants in the definition of M and L.
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exploration algorithm for multi-armed bandits. In Conference on Learning Theory, pages
423–439, 2014.

[29] Kevin Jamieson and Robert Nowak. Best-arm identification algorithms for multi-armed bandits
in the fixed confidence setting. In Information Sciences and Systems (CISS), 2014 48th Annual
Conference on, pages 1–6. IEEE, 2014.

[30] Dileep Kalathil, Naumaan Nayyar, and Rahul Jain. Decentralized learning for multiplayer
multiarmed bandits. IEEE Transactions on Information Theory, 60(4):2331–2345, 2014.

[31] Varun Kanade, Zhenming Liu, and Bozidar Radunovic. Distributed non-stochastic experts.
In Advances in Neural Information Processing Systems, pages 260–268, 2012.

[32] Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vocking. Randomized
rumor spreading. In Foundations of Computer Science, 2000. Proceedings. 41st Annual Sym-
posium on, pages 565–574. IEEE, 2000.

[33] Ravi Kumar Kolla, Krishna Jagannathan, and Aditya Gopalan. Collaborative learning of
stochastic bandits over a social network. IEEE/ACM Trans. Netw., 26(4):1782–1795, August
2018.

[34] Peter M Krafft, Julia Zheng, Wei Pan, Nicolás Della Penna, Yaniv Altshuler, Erez Shmueli,
Joshua B Tenenbaum, and Alex Pentland. Human collective intelligence as distributed bayesian
inference. arXiv preprint arXiv:1608.01987, 2016.

[35] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in applied mathematics, 6(1):4–22, 1985.

21



[36] Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. Distributed cooperative
decision-making in multiarmed bandits: Frequentist and bayesian algorithms. arXiv preprint
arXiv:1606.00911, 2016.
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A Analysis of the Algorithm

We will analyze the regret experienced by fixing an arbitrary agent I ∈ {2, · · · , n}. Recall the
definition given in Section 5 of when we call the early-phase of our system Good. Observe that if
the system is Good, then every agent will be aware of the best arm, in phase −1. Thus, conditional
on the event Good, all agents will start playing the best arm in phases 0 and above. For ease of
notation, denote by Tn := (M − 1)L(1 + δ) in the rest of the proof.

Lemma 7. A sample path is Good with probability at-least 1− 150 log(n)n−3.

The proof of this lemma is deferred to Section B. To carry out the analysis further, we will need
two classical results from the study of Multi-Armed Bandits (MAB) [4, 14].

Proposition 8. [4] Consider playing the UCB(α) algorithm for T time steps of a K armed MAB.

The regret is upper bounded by E[RT ] ≤ 4α
∆ log(T ) +K

(
1 + π2

3

)
.

We will also need another result from the literature [14] that we reproduce here for completeness.

Proposition 9. [14] Consider a MAB problem with K arms and playing the UCB strategy. The

probability that after T time steps the best arm is not the most played arm is at-most K
α−1

(
T
K − 1

)2(1−α)
,

for all T such that T ≥ max
(
K(K + 2),K

(
1 + 4α log(T )

∆2

))
.

Remark 10. The constant T0 is chosen such that T0 ≥ max
(
K(K + 2),K

(
1 + 4α log(T0)

∆2

))
, and

hence the previous error bounds are applicable to all agents in phases 0 and beyond.

To now carry out the analysis, we define a few other random variables. Denote by τ to be the
number of epochs of agent 1 that have elapsed, before agent I becomes aware of the best arm

(i.e., arm indexed 1). Recall that agent 1, has the best arm in its set at time 0, i.e., 1 ∈ A(−M)
1 .

Denote by the random variable X ∈ {1, 2, ..}, to be the first phase of agent 1, when agent 1
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communicates the best arm to agent I in consideration. In other words, X is a random variable

denoting the earliest late-phase state of agent 1, such that O
(X)
1 = 1, i.e., agent 1 has for its opinion

the best arm, and agent 1 communicates this opinion to agent I, while it is in phase X. Denote by
S ∈ {−M, · · · , , 0, 1, ...}, to be the state in which agent I receives the best arm for the first time,
as a recommendation from another agent.

Proposition 11.

E[τ |X] ≤ML+ bT0

2
22X−1c+ n

Proof. The time τ is clearly upper bounded by the time agent 1 takes to spread the best arm itself
to agent I. From the definition of the random variable X, this happens at some point of time when
agent 1 is in state X. Conditional on X, the number of epochs of agent 1 taken to reach the end
of phase X − 1 (which is also equal to the beginning of phase X) is ML + bT0

2 22X−1c. Now, in
phase X, the average number of epochs taken by agent 1 to communicate its opinion to agent I is
at-most n. This is at-most n, since conditional on X, we know that agent 1 will communicate the
best arm within a deterministic number of epochs. Since, the average time of a Geometric random
variable conditioned that it is smaller than a fixed deterministic constant is at-most its mean, in
an additional average of n epochs of agent 1 in phase X, it will communicate the best arm to agent
I.

Proposition 12. For all j ≥ 1, we have

P[X > j] ≤
j∏
i=1

(
K

α− 1

(
Ti−1

K
− 1

)2(1−α)

+ e−2i

)
,

where Ti := bT0
2 22ic − bT0

2 22i−1c. Here the empty product
∏0
i=1 = 1.

Proof. To have the event X = j, in all phases l ∈ {1, · · · , j−1}, we must have either had the opinion

O
(l)
1 6= 1, or agent 1 does not communicate the best arm to agent I in phase i. Additionally in phase

j, both the opinion O
(j)
1 must correspond to the best arm and agent 1 must have communicated

it to agent I in its jth phase. Since we are interested in an upper bound on the probability, we
can assume that agent 1 is aware of all n arms in all its late-stages. This provides the largest
error probability that the opinion of agent 1 in a late-phase is different from the best-arm. From
Proposition 9, we know the probability that agent 1 has an opinion in phase i which is different

from the best-arm is at-most K
α−1

(
Ti−1

K − 1
)2(1−α)

. Similarly, the probability that agent 1 fails to

communicate the best arm to agent I in n2i attempts is at-most (1 − n−1)n2i ≤ e−2i . Thus the
probability that agent 1 fails to inform agent I of the best arm, when agent 1 is in phase i is at-most(

K
α−1

(
Ti−1

K − 1
)2(1−α)

+ e−2i
)

. The result then follows from the independence of opinions and the

communication recipients of agent 1 across different phases and epochs.

Notice immediately that we have P[X <∞] = 1, and thus the algorithm ensures that agent I (and
by symmetry) all agents will be aware of the best arm eventually with probability 1. However, we
want to ensure that agents become aware of the best arm ‘soon’ enough on average, which is the
subject of the following computations.
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Proposition 13.

E[τ |Good] ≤ML,

E[τ |¬Good] ≤ML+ 5T0 + n

Proof. Conditional on the system being Good, we know that all agents are aware of the best-arm
before any agent moves into the late-phase. Since, every agent moves into the late-phase after ML
epochs, the first inequality follows.

For the second Equation, we proceed as follows. We upper bound the number of epochs τ by the
number of epochs that agent 1 takes to spread the best arm to agent I in the late-phase of agent
1. Conditional on the event not Good, we assume a worst case upper bound, where agent 1 is
playing among all the K arms in all its late-phases. Agent 1 moves into the late-phase after ML
clock epochs. We thus only need to compute the average number of epochs agent 1 takes, before it
finishes phase X − 1 in the late-stage. For any late-phase j ≥ 1, we know a bound on P[X = j + 1]
from Proposition 12. In the event X = j + 1, agent 1 takes a total of bT0

2 22jc epochs to move from
the beginning of phase 0 to the beginning of phase j + 1. Moreover, once in phase X, agent 1
will spread its opinion to agent I in at-most n average epochs. This follows since each recipient of
recommendations are chosen uniformly at random independent of everything else, and thus average
number of epochs required to contact agent I is n. Moreover, we know that within n2X epochs,
agent 1 will communicate with agent I. This conditioning only reduces the average number of
epochs required from n. Thus, the expected number of epochs of agent 1 to get from the beginning
of phase 0 to the beginning of phase X is at-most

E[τ |¬Good] ≤ML+
∞∑
j=1

bT0

2
22jcP[X = j] + n,

≤ML+
∞∑
j=1

bT0

2
22jcP[X ≥ j] + n,

≤ML+ 2T0 +
∞∑
j=3

bT0

2
22jcP[X ≥ j] + n.

From Proposition 12, we can bound the last series sum term as

∞∑
j=3

bT0

2
22jc

j∏
i=1

(
K

α− 1

(
Ti−1

K
− 1

)2(1−α)

+ e−2i

)
≤
∞∑
j=3

bT0

2
22jc

(
K

α− 1

(
Tj−1

K

)2(1−α)

+ e−2j

)

≤ T0

2

∞∑
j=3

(
2

e

)2j

+
T0

K

∞∑
j=3

1

22j
,

≤ T0

To have this sum convergent is precisely why agents communicate for n2j times in phase j in our
algorithm. This allows the error probability of e−2j , to decay doubly exponential, to make the
above sum convergent.
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As a corollary of the above statement, we get the following.

Corollary 14. Denote by τI to be the number of epochs of agent I, before it is aware of the best
arm. Then,

E[τI |Good] ≤ML

E[τI |¬Good] ≤ML+ 3T0 + n

Proof. Observe that the clock processes across agents are i.i.d.. The random variable τ is inde-
pendent of the clock process CI(·). More importantly, the random variable τ is independent of
the inter-epoch duration process of C1(·), and only depends on the randomness of the independent
marks of C1(·). Since, for any random variable F ∈ N such that F is independent of CI(·) and
C1(·), the expected number of epochs in CI(·), when F epochs occurs in C1(·) is F , the proof follows
from Proposition 13.

Proposition 15. Denote by S ∈ {−M, · · · , , 0, 1, ...} be the random variable denoting the phase of
agent I, when agent I receives the best arm. Then E[S|¬Good] ≤ 2 and E[S|Good] ≤ −1.

Proof. From definition of τI , we know from Corollary 14, that E[τI ] ≤ ML + 5T0 + n. For any

deterministic t ∈ N, denote by S(I)
t ∈ {−M, · · · , 0, 1, · · · } to be the state of ant agent after t epochs.

From the description of the algorithm, we have

St ≤ inf

{
m ≥ 0 : t ≤ bT0

2
22mc

}
,

It is easy to verify that for t = ML+ 5T0 + n ≤ 8T0, that St ≤ 2. Thus, after a random τI number
of epochs, we have

E[S] = E[SτI ]

= E
[
inf

{
m ≥ 0 : τI ≤ b

T0

2
22mc

}]
(a)

≤ inf

{
m ≥ 0 : E[τI ] ≤

m∑
l=0

bT0

2
22lc

}
= SML+5T0+n ≤ 2.

Inequality (a) follows from the fact that E[inf f(X)] ≤ inf E[f(X)] for any non-negative function
f(·).

Proposition 16. For all agents i ∈ {1, · · · , n}, we have
∑

j≥1 P[O
(j)
i 6= 1|Good] ≤ K−2.

Proof. Conditional on the event Good, we know that the best arm is played by all agents in the
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late phase. For any agent i ∈ [1, n] and any phase j ≥ 1, we can bound the error probability as

P[O
(j)
i 6= 1|Good] ≤ K

α− 1

(
1

K
bT0

2
22j−1c − 1

)2(1−α)

,

≤ K

α− 1
(K22j−1−1 − 1)2(1−α),

≤ K

4(α− 1)
K2(1−α)22j(1−α).

The second inequality above follows from the fact that T0 ≥ K2. By setting α = 3, we get that

P[O
(j)
i 6= 1|Good] ≤ K−2

8 2−2j+1
. The result follows from a simple series bound.

As a consequence of the above proposition, we obtain the following result.

Proposition 17. For any j ≥ 0, we have E[|A(j)
I |] ≤ 2M + 3K

n2 + dKn e.

Proof. We have the basic decomposition.

E[|A(j)
I ] = E[|A(j)

I |Good]P[Good] + E[|A(j)
I |¬Good]P[¬Good],

≤ E[|A(j)
I |Good] +K(3n−2),

where in the second step we use the bound P[Good] ≤ 1 and E[|A(j)
I |¬Good] ≤ K and the result

of Lemma 7 to bound P[¬Good] ≤ 3n−2. Thus it remains to compute E[|A(j)
I |Good] ≤ 2M + 1 to

complete the proof.

At the beginning of any phase, |A(j)
I | is dKn e (the initial number of arms per agent) plus the sum of

distinct arm ids received by agent I uptill the end of phase j − 1. Conditional on the event Good,
we know that agent I will receive no more than 2M − 1 arms from all other agents, when the other
agents were in phase −1. Furthermore, conditional on the event Good, all agents will have the best
arm when they move to phase 0. It thus remains to compute the expected number of arms received
by agent I, when the agent recommending the arm is in a phase larger than or equal to 1. From
Proposition 16, we know that with probability at-least 1−K−1, no agent will recommend an arm
different from the best arm in any late-phase. This then gives by a total probability argument that

E[|A(j)
I ||Good] ≤ 2M − 1 + dK

n
e+K−1K,

where we assume the trivial upper bound of K, in the case that any agent in the late phase
recommends an arm different from the best arm.

Equipped with the above set of results, we are now ready to prove Theorem 1, on the regret
experienced by agent I.

Proof. The regret of agent I after T epochs can be decomposed into three terms -

• The regret of at-most ML, for the ML epochs in the early stage of agent I.

• The regret due to UCB algorithm in the late-stage of an agent. Here the number of arms
played by agent I in different late stage phases is different and random.
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• An additional regret, if any paid until agent I is aware of the best arm in the late-stage.

The total regret, by linearity of expectation, is at-most the sum of the above three regret terms.

Term 1: All agents pay a regret no larger than ML in their early phase.

Term 2: To do so, we need some notation. Denote by a sequence (Gi)i≥0, where G0 = 0 and

Gi = bT0
2 22i−1c, for i ≥ 1. Notice that any agent plays for Gi+1 −Gi durations in phase numbered

i. For any T ∈ N, denote by LT ∈ {0, ..} to be the last full phase played by agent I, i.e.,

LT := max{i ≥ 0 : Gi ≤ T}. It is immediate to observe that LT ≤ log2

(
log2

(
2T
T0

))
. We will

thus bound the regret as the sum of regret experienced by agent I in the first LT + 1 phases of the
late-stage.

E[R
(I);Late-Stage
T ] ≤

LT+1∑
i=0

E[R
Gi+1−Gi;|AI(T

(I)
i )|],

≤
LT+1∑
i=0

E[E[R
Gi+1−Gi;|AI(T

(I)
i )|||AI(T

(I)
i )|],

(a)

≤
LT+1∑
i=0

E
[

4α

∆
|AI(T (I)

i )| log(Gi+1 −Gi) + |AI(T (I)
i )|

(
1 +

π2

3

)]
,

(b)

≤
LT+1∑
i=0

(
4α

∆
E[|A(j)

I |] log(Gi+1) + E[|A(j)
I |]

(
1 +

π2

3

))
,

≤
LT+1∑
i=0

(
4α

∆
E[|A(j)

I |] log(T022i−1) + E[|A(j)
I |]

(
1 +

π2

3

))
,

≤ (LT + 2)

(
4α

∆
E[|A(j)

I |] log(T0) + E[|A(j)
I |]

(
1 +

π2

3

))
+

LT+1∑
i=0

4α

∆
E[|A(j)

I |] log(2)2i,

(d)

≤ 16α

∆
E[|A(j)

I |] log(T )+

2 log2

(
log2

(
2T

T0

))(
4α

∆
E[|A(j)

I |] log(T0) + E[|A(j)
I |]

(
1 +

π2

3

))
.

Inequality (a) follows from the classical result on UCB(α) [4] and the fact that for all i ≥ 0, |A(j)
I |

is independent of the regret incurred by agent I in state j. Inequality (b) follows from replac-
ing Gi+1 − Gi ≤ Gi+1 and Proposition 17. Inequality (d) follows from the fact that LT + 2 ≤
2 log2

(
log2

(
T
T0

))
. Recall that an upper bound for E[|A(j)

I |] is given in Proposition 17.

Term 3: If the event Good holds, then all agents are aware of the best arm at the beginning of
their late-phase and hence do not pay any additional regret apart for terms 1 and 2. In the rare
case that the Good event does not hold, which from Lemma 7, we know happens with probability
at-most 150n−3, we know from Proposition 15 that on average, agent I does not play the best arm
until the end of phase 2. Thus, conditional on the system not being Good, the additional regret
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played by agent I is at-most the number of epochs it takes to move from the beginning of phase 0
to phase S + 1, which on average is 8T0. Since this occurs with probability at-most 150 log(n)n−3,

the regret accounted for the third term is at-most 150 log(n)n−38T0 = 1200 log(n) log(ε−1) max(K2,n)
n3ε2

.

B Early Stage Analysis - Proof of Lemma 7

The lemma states that
P(E1 ∩ E2 ∩ E3) ≥ 1− 150 log(n)n−3.

Thus, it suffices to prove that
∑3

i=1 P(Eci ) ≤ 150 log(n)n−3. This follows from Lemmas 23, 18 and
19 below. We first analyze events Ec2 and Ec3, for which the required inequalities follow directly from
Chernoff tail bounds.

Lemma 18.

P[E2] ≥ 1− n−5

Proof. Observe that for any agent i, the number of recommendations it receives from all the other
n− 1 agents, through all M of their early phases, is a Binomial random variable with parameters
(n− 1)M and 1/(n− 1). This is because there are a total of (n− 1)M possible recommendations
that can be made by the other agents during their early phases, and each of those recommendations
reach agent i with probability 1/(n− 1), independent of everything else. Thus, from standard tail
bounds, we have

P
[
Bin

(
(n− 1)M,

1

n− 1

)
> 2M − 2

]
≤ exp

(
−2

3
M

)
≤ n−6

Thus, from an union bound, we observe that with probability at-least 1 − n−5, every agent will
receive lesser than or equal to 2M − 2 recommendations from another agent in phase −1.

Lemma 19.

P[E3] ≥ 1− n−3.

Proof. Any agent i ∈ [n], will be in phase M or larger at time Tn, if in the time interval [0, Tn],
at-least ML clock ticks of the clock process Ci(·) has occurred. We can bound the probability of
this not happening by a standard Chernoff bound as

P [Poi((M − 1)L(1 + δ)) ≥ML] ≤ n−4,

since δ = 1
3M . Thus, by an union bound, at time Tn, with probability at-least 1− n−3, no agent is

in phase 0 or larger.
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However, we remark that in the sequel in Lemma 24, we shall prove a more stronger statement
which implies Lemma 19. In order to bound the probability of event E1, we need the following
result on bandit arm estimation, whose proof can be found in [14].

Lemma 20. If an agent has 2M arms, where at each play instant it chooses an arm in a round
robin fashion, then the probability that the arm corresponding to the highest empirical mean does
not equal the arm with the highest mean reward after playing for
L ≥ d2M

∆2 log(200M∆)e times is at-most 1/100.

In order to bound the error probability E1, we consider a fictitious virtual system and show in the
sequel that with probability at-least 1 − 2n−3, the evolution of the virtual system coincides with
that of our algorithm in the time interval [0, Tn]. The virtual system, also consists of n agents, with
each agent playing the same bandit problem with the same K arms. The algorithm employed by
the agents in this virtual system is identical to the algorithm employed by the agents with identical
initialization of arms in the early-phase with the following three additional modifications.

• The agents are always in the early-stage till time Tn. In particular, if any agent makes M
recommendations before time Tn, it will continue to play further with the same early-stage
protocol until time Tn in the virtual system.

• At time Tn, the virtual system stops and no more activity occurs.

• At the beginning of any stage, if any agent in the virtual system has 2M + dKn e+ 1 or more
arms under consideration for the next state, then it will drop some arms to ensure that it has
exactly 2M + dKn e arms to play at the beginning of the next state. The arm dropping policy
is as follows. If an agent hasM≥ 2M+dKn e+1 arms at the beginning of a state and the arm
indexed 1 (i.e., the best arm) is not in the agent’s playing set, then the agent chooses a set of
2M + dKn e arms from among the M arms it has uniformly and independently at random. If
on the other hand, amongst the M arms that an agent has, the best arm, i.e., arm indexed
1 is in the agent’s bag, then the agent chooses a uniformly at random subset of arms of size
2M − 1 + dKn e from amongst the set of M− 1 arms it has. In other words, if an agent has
the best arm in its set, it never gets dropped.

Lemma 21. With probability at-least 1 − 2n−3, the above virtual system and the algorithm has
identical sample paths uptil time Tn.

Proof. We construct a coupling of the virtual system and the algorithm through the same clock
process (Ci(·))ni=1 and the randomness for both sampling the rewards of arms and for the gossiping
communication process. Thus, on the event E2 and E3, this coupling construction produces identical
sample paths in the virtual system and the algorithm. For on the event E2, no agent in the virtual
system will ‘drop arms’ and on the event E3, all agents in the original algorithm are in their early-
phase. Lemmas 18 and 19 then give that with probability at-least 1− 2n−2, both events E2 and E3

occurs.

We now analyze the behaviour of this virtual system as it is somewhat easier, and then use the
above coupling result to conclude about the algorithm in the early stage. Denote by the event Ẽ1

to be the event at time Tn, all agents in the virtual system are aware of the best arm.
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Lemma 22.

P[Ẽc1] ≤ 146 log(n)n−3.

Before giving the proof of this Lemma, we notice that this immediately yields that in the original
system:

Lemma 23.

P[Ec1] ≤ 148 log(n)n−3.

Proof. Denote by the random time Ŷn to be the first time when all n agents in the virtual system
are aware of the best arm. In the event that by time Tn, not all agents are aware of the best arm,
i.e., on the event Ẽc1, let Ŷn = ∞. Similarly denote by the random time Yn to be the first time
when all agents in the algorithm are aware of the best arm. Notice from the construction of the
virtual system, that on the event the algorithm and the virtual system couples, we have Yn ≥ Ŷn,
with Yn = Ŷn if both the algorithm and the virtual system couples and event Ẽ1 occurs. Thus, we
have from total probability, the following chain

P[Ec1] = P[Ec1,Coupling occurs] + P[Ec1,Coupling fails],

(a)

≤ P[Ŷn > Tn,Coupling occurs] + P[Coupling Fails],

≤ P[Ŷn > Tn] + P[Coupling Fails],

(b)

≤ 146 log(n)n−3 + 2n−3,

≤ 148 log(n)n−3.

In step (a), we use the fact that on the event that coupling occurs, we have Yn ≥ Ŷn, which is the
same as event Ẽc1. In step (b), we use the estimates from Lemmas 21 and 22.

We now return to Proof of Lemma 22. The key idea we will employ to prove Lemma 22 is to
notice that w.h.p., the spreading dynamics in the virtual system behaves almost identical to that
of a discrete rumor mongering system. Precisely, we can ensure that w.h.p., the recommendations
made by the agents ‘follow in sync’, i.e., no agent will make its j + 1st recommendation, before all
other agents finish making their jth recommendation, for all j ∈ [0,M ].

Lemma 24. With probability at-least 1 − n−3, for all j ∈ [1,M ], for all agents i ∈ [n], agent i
makes its jth early stage transition in the time interval [jL(1− δ), jL(1 + δ)].

Proof. Observe that it suffices to prove that both P[Poi(L(1−δ)) > L] ≤ n−4 and P[Poi(L(1+δ)) <
L] ≤ n−4. If we establish this, then it follows from an union bound over all agents and all phases, the
claim of the lemma holds. From elementary Chernoff bounds, it follows that P[Poi(L(1+δ)) < L] ≤
e−L(δ+ln( 1

1+δ )) ≤ e−
1
2
Lδ2 ≤ n−5. Similarly, computing P[Poi(L(1 − δ)) > L] ≤ e−L(ln( 1

1−δ )−δ) ≤
e−

1
2
Lδ2 ≤ n−5.
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Since δ = 1
3M , we have for all i ∈ [0,M − 1], iL(1 + δ) < (i+ 1)L(1− δ). Thus, the above lemma

gives us that all the arm recommendation events are ‘separated’. See also Figure 3. Thus, in light
of Lemmas 24 and 20, we can consider the following discrete time system, which can be viewed as
a ‘noisy spreading’ version of the classical [24] process. There are n nodes, with nodes numbered
1 initially possessing a message. In each time-step, every agent that has had the message for at-
least 1 or more time-steps, calls another agent chosen uniformly and independently at random and
attempts to communicate the message. Each communication attempt is correct with probability
at-least 99/100, independent of everything else. More formally, for every agent i ∈ [n], denote by
Yi ∈ N to be the first time agent i learns of the rumor. By definition, Y1 = −1, as initially, we
assume that agent 1 is aware of the message/rumor. The rumor spreads, where in each time t ∈ N,
all agents i ∈ [n], such that Yi ≤ t − 2, will attempt to communicate the rumor to another agent
chosen uniformly and independently at random. Each communication attempt is successful with

probability p ∈ (0, 1], independent of everything else. Denote by S
(p)
n = maxi∈[n] Yi, the first time

when all agents are aware of the rumor. Observe that this process differs from the classical rumor
mongering process of [24] in two aspects. First, not all agents that receive the rumor spreads it.
Only those that have had the rumor for at-least 1 time slot participate in spreading it. Second, each
communication attempt is successful with probability 99/100, rather than being deterministically
successful. Nevertheless, we will show in Theorem 25, that this process behaves similar to the
classical rumor mongering process of [24], i.e., Sn = O

(
log(n)

)
, with high probability. A precise

statement is available in Theorem 25 where the proof follows similar arguments as used in [24],
which we produce here for completeness. The main reason we introduce this process as there is
a natural coupling between the virtual system and the above described discrete process, which is
summarized in Proposition 26.

Theorem 25. For the noisy delayed rumor mongering process, we have for any γ > 0, p ∈ (0, 1]
and all n sufficiently large,

P[S(p)
n ≥ 2C(γ, p) log(n)] ≤ (2 + log2−η(n))n−(γ+1),

where C(γ, p) and η are given in Theorem 27.

The proof of this is deferred to the Appendix C. From Remark 28 in the sequel, the above statement
reads that for all n ≥ 29,

P[S(0.99)
n ≥ 361 log(n)] ≤ 145 log(n)n−3. (3)

Observe that the total number of early phases in our algorithm is equal to C(2, 0.99) log(n) + 1,
where C(2, 0.99) ≤ 361 is from the above Theorem 25. Denote by the event Ed := {Sn < 2C(2, 0.99)
log(n)} in the above rumor mongering process.

Proposition 26. There is a coupling between the virtual system and the discrete time rumor
mongering process described above with noise probability p = 99/100, such that on the event Ed in
the rumor mongering process and the event in Lemma 24 in the virtual system, all agents i ∈ [n]
in the virtual system are aware of the best arm at time YiL(1 + δ).

Proof. Observe that the number of recommendations made by any agent in the virtual system is
C(2, 0.99) log(n). Thus, on the event Ed, we have for all i ∈ [n], Yi ≤M . To describe the coupling,
we map the rumor in the rumor mongering process to the best arm id in our algorithm. The success
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probability in the rumor spreading corresponds to the fact that agents in the algorithm recommend
the best-arm. Since agents do not reuse samples, the independence of communications in the rumor
mongering process follows from that in the algorithm. To conclude the proof, it suffices now to
argue that a deterministic one step delay in the discrete rumor spreading process provides an upper
bound to the process induced by our algorithm. Notice that if an agent receives the best arm in
time slot [iL(1−δ), iL(1+δ)] for some i ∈ [M ] (this will be the case under the event in Lemma 24),
then the agent that receives this arm, may already have shifted to the next stage, and in particular,
will not recommend this received arm in the time interval [(i+ 1)L(1− δ), (i+ 1)L(1 + δ)]. Thus,
the deterministic one step delay in the discrete rumor mongering process provides an upper bound
on the times when an agent starts considering the best arm for recommendation.

We are now ready to conclude the proof of Lemma 22.

Proof. of Lemma 22.
Notice that M = 361 log(n)+1 and from Theorem 25 and Equation (3), we have 2C(2, 0.99) ≤ 361.
Thus, from Proposition 26, and the estimates in Lemma 24, we know that with probability at-least
1 − n−3, the virtual system is such that, the arm spreading process is dominated by the discrete
rumor mongering process. Further, from Theorem 25 and Equation (3), the rumor mongering
process communicates the best arm-id to all agents before M time slots with probability at-least
1− 145 log(n)n−3. Thus, we have P[Ẽ1] ≥ 1− 146 log(n)n−3.

C Proof of Theorem 25

In order to prove Theorem 25, we shall consider a noisy version of the classical rumor spreading
process of [24] and [42]. Suppose there are n agents with agent 1 holding a message at time 0. For
each agent i ∈ [n], denote by time Ỹi ∈ N, to be the first time when agent i is aware of the message.
By definition, we have that Ỹ1 = 0. In each time step t ∈ N, every agent i such that Yi ≤ t − 1,
will attempt to communicate the message to another agent chosen uniformly and independently at
random. Each communication successfully communicates the message with probability p ∈ (0, 1].

Denote by S̃
(p)
n = maxi∈[n] Ỹi, to be the first time when all agents are aware of the message. The

following theorem sheds light on the growth of the random variable S̃
(p)
n .

Theorem 27. Let p ∈ (0, 1] and γ > 0 be arbitrary and V = 1

log

(
1

7
10 p+p̄

)(γ+1). For all n sufficiently

large such that pV log(n)
n + p̄ < 1, we have

P[S̃(p)
n ≥ C(γ, p) log(n)] ≤ (2 + log2−η(n))n−(γ+1), (4)

where C(γ, p) = log2−η(n) +
(
D + 3

p(3 + 2γ)
)

log(n). The constant η ∈
(

2
3p+ p̄, 1

)
is the smallest

possible number such that (
2p
3 + p̄

η

)η
1

(1− η)(1−η)
<

7

10
p+ p̄ < 1, (5)

33



and D is the smallest positive number so that the following equation is satisfied

inf
A>1

(
ApV

log(n)

n
+Ap̄

)D Ap

(A− 1)
(
ApV log(n)

n +Ap̄
)
V

≤ e−(γ+1). (6)

A choice of η exists since limη↗1

(
ζ2p+p̄
η

)η
1

(1−η)(1−η) = ζ2p+ p̄ < 1, for all ζ ∈ (0, 1/2). A choice of

A > 1 exists since pV log(n)
n + p̄ < 1.

Remark 28. For the case of p = 0.99 and γ = 2, we have V = 8.52 and η = 0.993. For all n ≥ 29,
we have pV log(n)

n + p̄ < 1. This gives us D = 15.85. This gives us that C(2, 0.99) ≤ 180.413.

Before we give the proof, we notice that Theorem 27 immediately yields Theorem 25 as a corollary.
For any x ∈ N, we have the following stochastic domination

P[S(p)
n ≥ 2x] ≤ P[S̃(p)

n ≥ x]. (7)

This above Equation follows as one can view an upper bound to the delayed process where agents
only call in even numbered time-slots. The time for everyone to know the message in this call only
at even time slots process is clearly lower bounded by the time taken for all agents to know the
message when only the newly informed agents keep silent instead of all agents, i.e., the one step
delayed process. Hence, in light of Equation (7), it suffices to establish Theorem 27 in order to
prove Theorem 25.

Proof. The proof follows similar ideas used in [24] and [42]. We set some notations to carry out
the proof. Denote by the ‘state’ of the system at time t ∈ N to be the number of agents that are
aware of the rumor. For simplicity, at any time t ∈ N and state i ∈ [n], we will assume that agent
1 makes i different calls in this time step. Each call of agent 1 communicates the message across
with probability p independent of everything else. For i ∈ [n − 1], denote by Wi as the number
of calls needed to be made by agent 1 to move the system from state i to i + 1. Let p̄ := 1 − p.
Clearly, the following holds true.

P[Wi = r] =

(
i

n
p+ p̄

)r−1(
1− i

n

)
p

E[etWi ] =
p(n− i)

e−tn− (ip+ np̄)
, ∀t ≥ 0, s.t. et <

n

ip+ np̄
.

It is immediate to verify that for all i < j and all t < n
jp+np̄ , we have

E[etWi ] ≤ E[etWj ]. (8)

In order to establish Equation (4), we shall consider the spread of rumor in phases as done in [24].
Recall from the theorem statement that the constant V = 1

log

(
1

7
10 p+p̄

)(γ+ 1). We will establish the

following.

1. With probability at-least 1 − n−(γ+1), the number of informed agents increases from 1 to
V log(n), in at-most D log(n) time where V is in Theorem 27 and D is given in Equation (6).
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2. With probability at-least 1− log2−η(n)n−(γ+1), where η is given in Equation (5), the number
of informed agents increases from V log(n) to n/3 in at-most log2−η(n) time.

3. With probability at-least 1 − n−(γ+1), the number of informed agents increases from n/3 to
n in at-most 3

p(3 + 2γ) log(n) time.

If the above statements hold true, then the theorem is concluded by a straightforward union bound.
In what follows we establish each of the above three claims separately.

Step 1 -

The probability that it takes more than D log(n) time to inform V log(n) people is upper bounded
by P[W1 + · · ·+WV log(n) ≥ D log(n)] which in turn can be upper-bounded as follows.

P[W1 + · · ·+WV log(n) ≥ D log(n)]

(a)

≤ e−D log(n)t

V log(n)∏
i=1

p(n− i)
e−tn− (ip+ np̄)

,

(b)

≤ e−D log(n)t

(
pn

e−tn− (V log(n)p+ np̄)

)V log(n)

,

(c)

≤
((

V p
log(n)

n
+ p̄

)
A

)(D−V ) log(n)(( Ap

A− 1

))V log(n)

.

In step (a), we use the classical Chernoff type bound where for a positive random variable X, for
all x ≥ 0, P[X ≥ x] ≤ e−txE[etX ], for all t ≥ 0. In step (b), we use Equation (8). In step (c), we
use et = n

A(log(n)p+np̄) for an appropriate value of A > 1. Thus, we get

P[W1 + · · ·+WV log(n) ≥ D log(n)]

≤

(ApV log(n)

n
+Ap̄

)D Ap

(A− 1)
(
ApV log(n)

n +Ap̄
)
V


log(n)

.

From the choice of the constant D specified in Equation (6) and n is sufficiently large as specified
in the theorem, we can choose A > 1 such that P[W1 + · · ·+WV log(n) ≥ D log(n)] ≤ n−(γ+1).

Step 2 -

We will show that with high probability, starting from V log(n) informed agents, in each time step,
the number of informed agents multiples by a factor of at-least (2− η) > 1 until n/3 agents are in-
formed for the first time. This implies that, with probability at-least n−(γ+1), in at-most log2−η(n)
steps, the total number of informed agents rise from V log(n) to n/3.

More precisely, we will argue that if at some time t, the number of informed agents is V log(n),
then, with high probability, for all k ∈ N such that V log(n)(2−η)k ≤ n/3, the number of informed
agents at time t + k is at-least V log(n)(2 − η)k. Thus, within φ := log2−η(n/3V log(n)), steps,
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the number of informed people increase from V log(n) to n/3 with high probability. To implement
this proof, define recursively, the following events. Event D(1) states that given there are at-least
V log(n) informed agents, there are lesser than V log(n)(2 − η) agents in the next time step. The
event D(i), for i ∈ {1, φ} is the event that starting from at-least V log(n)(2−η)i−1 informed agents,
there are fewer than V log(n)(2− η)i informed agents in the next time step. To argue about Step
2, it suffices to bound

∑k
i=1 P[D(i)]. For any i ∈ {1, · · · , φ}, we have

P[D(i)] ≤ P[Wj ..+Wj(2−η) > i],

where j = V log(n)(2− η)i−1. Following the steps we outlined earlier, i.e., the Chernoff bound and
Equation (8), we bound this probability as

P[Wj ..+Wj(2−η) > j] ≤ e−jt
j(2−η)∏
l=j

E[etWl ],

≤ e−jt
(

p(n− j(2− η))

e−tn− (j(2− η)p+ np̄)

)j(1−η)

,

≤ e−jtη
(

pn

n− et(jp(2− η) + np̄)

)j(1−η)

,

≤
((

j

n

p(2− η)

η
+
p̄

η

)η ( p

1− η

)(1−η)
)j

where in the last step, we substitute t such that et = nη
jp(2−η)+np̄ . Thus, we have

P[∪φi=1D(i)] ≤
φ∑
i=1

P[D(i)],

≤
φ∑
i=1

((
j

n

p(2− η)

η
+
p̄

η

)η ( p

1− η

)(1−η)
)V log(n)(2−η)i−1

,

≤ φ
((

ζ
p(2− η)

η
+
p̄

η

)η ( p

1− η

)(1−η)
)V log(n)

,

≤ log2−η(n)

(
7

10
p+ p̄

)V log(n)

,

≤ log2−η(n)n−(γ+1).

Step 3 -

We once again employ the Chernoff bound and Equation (8) to our benefit. We shall bound the
probability of the total number of calls taken to move from one agent knowing the rumor to all n
agents knowing the rumor is order n log(n) with probability at-least 1 − n−(γ+1). However, as we
have at the beginning of this phase, at-least n/3 informed agents, this calculation will give that
at-most order log(n) calls suffice to move the system where n/3 agents know the message to all n
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agents knowing the message. Denote by Λ = 3+2γ
p . The computation is as follows

P[W1 + · · ·+Wn−1 ≥ Λn log(n)] ≤ e−tΛn log(n)
n−1∏
j=1

p(n− j)
e−tn− (jp+ np̄)

.

We will substitute e−t = 1− p(2n)−1 in the above expression to obtain

P[W1 + · · ·+Wn−1 ≥ Λn log(n)] ≤
(

1− Rp

2n

)Λn log(n) n−1∏
j=1

p(n− j)
n− p

2 − (jp+ np̄)
,

=
(

1− p

2n

)Λn log(n)
n−1∏
j=1

p(n− j)
pn− p

2 − jp
,

=
(

1− p

2n

)Λn log(n)
n−1∏
j=1

(n− j)
n− 1

2 − j
,

=
(

1− p

2n

)Λn log(n)
n−1∏
j=1

2j

2j − 1
,

=
(

1− p

2n

)Λn log(n)
n−1∏
j=1

(
1 +

1

2j − 1

)
,

≤
(

1− p

2n

)Λn log(n)
exp

n−1∑
j=1

1

2j − 1

 ,

≤
(

1− p

2n

)Λn log(n)
exp

(∫ n

x=1

1

2x
dx

)
,

≤
((

1− p

2n

)Λn
exp

(
1

2

))log(n)

,

≤ e−(γ+1) log(n),

≤ n−(γ+1).

since Λ = 3+2γ
p . Thus, a total of Λn log(n) calls from agent 1 suffices to inform all agents. However,

as there are at-least n/3 informed agents in each round, the above procedure takes at-most 3Λ log(n)
time steps to complete.

D Interpretation of the Result

Our main result on the per-agent regret given in Equation (1) is a sum of 4 terms, each of which
has a natural interpretation.

1. The term 4α
∆ 4M̂ log(T −T0) is the usual logarithmic scaling with time of the UCB algorithm.

However, this term states that on average, an agent is aware of no more than order log(n)+dKn e
arms, as M = Θ(log(n)) and thus a typical agent only explores order log(n) + dKn e) arms

37



on average. Nevertheless, all agents are aware of the best arm, which allows a logarithmic
scaling of regret with time as opposed to a linearly scaling, which would be the case if an
agent, with positive probability, is not even aware of the best arm eventually.

2. The term ML constitutes the regret an agent pays in the early-phase. Notice that every agent
is in the early phase for exactly ML epochs. In the early phase, agents are only involved in
best-arm identification and gossiping and hence incur a linear regret.

3. The 2 log2

(
log2

(
2T
T0

))(
4α
∆ log

(
T0
2

)
+ M̂

(
1 + π2

3

))
1T≥T0 term is the regret incurred by agents

in the late-phase due to not re-using samples across phases. Recall that, even in the late-
phase, agents only play arms based on the observed arm rewards in the current phase and
not based on the observed rewards of previous phases. This was done so as to ensure statis-
tical independence between quality of late stage recommendations and observed regret. This
however incurs a cost in the regret given by the term that scales as Θ(log(n) log log(T )).

4. The term 8T0

(
150 log(n)

n3 1n≥29 + 1n<29

)
accounts for the errors as agents can in rare cases,

shift into late-phase without necessarily being aware of the best arm. This is term accounts
for the regret incurred in the late-stage in case of agent I not being aware of the best-arm at
the beginning of phase 0, and must wait for a certain duration before becoming aware of and
paying the best arm.

E Useful Tail Bounds

In this section, we collect all useful Chernoff tail bounds for the various distributions for ready
reference.

Lemma 29. Let X be a Poisson random variable of mean λ > 0. Then, for any t > 0, P[X >

λ + t] ≤ e−
t2

2λ
h( tλ), and for any 0 < t < λ, P[X < λ − t] ≤ e−

t2

2λ
h(− t

λ), where the function

h(u) := 2 (1+u) ln(1+u)−u
u2 .

Lemma 30. Let X be a Binomial random variable, i.e., X ∼ Bin(n, p) for some n ∈ N and

p ∈ (0, 1). Then, for any δ > 0, P[X > (1 + δ)np] ≤ e− δ2

2+δ
np.

Lemma 31. Let X be an exponential random variable of mean λ (i.e., parameter 1
λ). Then for

any t ≥ 0 P[X > tλ] ≤ e−t.
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