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ABSTRACT

KEYWORDS: Tomography, Erdös-Renyi Random graphs, Edit Distance

Graph reconstruction is the problem of estimating the graph (the adjacency matrix)

using measurements that can be obtained from the graph. This problem is also broadly

referred to as topology discovery or network inference in literature. The required output

of any topology inference algorithms is a network structure (the adjacency matrix) of

the underlying network which is unknown. In doing so, these algorithms will require

some data about the network which are usually measurements generated by running

some experiments on the underlying network.

In this thesis, the information about the network is captured through end-to-end

shortest path delays between a subset of nodes called participants. All participants send

probe packets to each other participant through the shortest path and the corresponding

packet delays are noted. These shortest path delay information is the input considered

to the estimation algorithm.

Also, the analysis and performance in this thesis is with regard to only reconstruct-

ing and inferring topology of sparse graphs. That is it is known apriori that the network

structure to be inferred is sparse in the number of links. The definition of sparse in this

context means that the number of edges in the graph is O
(
V
)
. The sparse graphs are

statistically modeled using the well studied Erdös-Renyi Random graphs.

The main results of this thesis is in characterizing the minimum number of partici-

pants required for near-accurate reconstruction of the sparse graph. The analysis aims

to state a minimal sufficient condition under which the tomography of sparse graphs

can be performed accurately almost always.
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CHAPTER 1

INTRODUCTION

Network Tomography or Topology Inference refers to the task of learning the internal

characteristics of the system based on external observable measurements. Thus in terms

of networks, the main output of topology inference algorithms is the underlying graph

or network structure from which observations are made.

The inference of the underlying network is crucial and a challenging task. Topology

inference has vast applications ranging from computer and communication networks to

social networks. For instance, in computer or communication networks, the knowledge

of the underlying topology can be used for routing especially in ad-hoc networks where

there is no explicit server with the entire topology knowledge; evaluating the resilience

of the network to node/link failures Kandula et al. (2005); for network traffic monitor-

ing and prediction Eriksson et al. (2007) or to infer the sources of viruses and other

malicious content on the network Shah and Zaman (2010). With regards to social net-

works, network structure is useful in studying and understanding many characteristics

of the society such as identification of hierarchy and community structure Fortunato

(2009); prediction of information flow Wu et al. (2004) and to evaluate the possibility

of information leakage in anonymous social networks. A useful commercial application

of topology inference in the context of social networks is to choose sites for percolating

information flow which can be exploited heavily by advertisers wanting to push infor-

mation to all members of the networks by minimizing the amount of initial sites chosen

for percolation.

In computer networks and on the internet, the most popular tool to perform network

inference is based on ’traceroute’ and ’mtrace’ which generates path information be-

tween pairs of nodes on the internet. However, one main disadvantage of these tools is

that they require the cooperation of the intermediate nodes and routers to generate mes-

sage using the ’Internet Control Message Protocol (ICMP). But of late due to privacy



and security concerns Yao et al. (2003) a lot of the routers block traceroute requests

thus making topology inference on general networks difficult.

Thus what is needed is a method of topology inference without explicit cooperation

from all the nodes in the network but only cooperation of a few nodes. This method is

what is referred to as Network Tomography in the literature. Tomography approaches

uses indirect measurements such as delays of packet transmissions to infer the network.

In this project, the system model so employed is such that the data to reconstruct is

generated by mechanisms involving no explicit cooperation of the intermediate nodes

apart from doing their regular duty such as forward packets on the appropriate link

based on the receiver address.

To study the subject of tomography, this project focuses only on the reconstruction

of sparse graphs instead of any arbitrary network. The modeling and analysis is based

on statistical modeling of network, i.e the topology is assumed to come from a known

statistical distribution and the measurements are generated by some known statistical

process. The system model and the exact problem setup is explained in the following

chapter.

The thesis is organized as follows. Chapter 2 deals with the model chosen for the

system and the exact problem setup. Chapter 3 established prior results in this area and

frames the central question this project tries to address. Chapter 4 is the solution outline

of the problem and its analysis. Chapter 5 is the concluding chapter that deals with the

inference from this project and some unanswered questions in this project.
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CHAPTER 2

SYSTEM MODEL

This chapter explains the system model and the problem setup.

2.1 Erdös-Renyi Random Graph Model

Network Tomography in the context of this project only concerns the reconstruction of

sparse random graphs. The statistical model for the sparse graph used in this thesis is the

Erdös-Renyi Random Graph ensemble. The assumption in the rest of the thesis is that

the unknown network topology is drawn from a known ensemble of the Erdös-Renyi

Random Graph.

The Erdös-Renyi Random Graph is the simplest class of random graphs. It is char-

acterized by two parameters n and p. The notation for the random graph ensemble is

G(n, p). In this notation, n denotes the number of nodes in each graph in the ensemble

and p denotes the probability for an each edge to be present in a graph. Thus a sample

from this ensemble consists of a graph with n nodes and each of the possible
(
n
2

)
edges

occur independently with probability p.

A sequence of graphs are called sparse if the average node degree does not scale

with the number of nodes, i.e the total number of edges is of order O
(
n
)

where n is

the number of nodes. The random graph distribution sampled from G(n, c
n
) is almost

always sparse as the average node degree is c a constant independent of n. Thus the

random graph ensemble from now on in this thesis refers to the Erdös-Renyi graph

distribution with parameters n and c
n

.

It is a well known fact that the sparse Erdös-Renyi random graphs exhibit a phase

transition with respect to the parameter c. When c > 1, there is one giant connected

component having θ(n) nodes for almost every graph in the ensemble while all other

connected components have a maximum of O
(
(log n)

)
nodes. On the other hand if



Figure 2.1: An example of a graph

c < 1, there will have no giant component i.e the maximum size of the largest connected

component will be O
(
(log n)

)
for almost every graph in this ensemble. Thus c = 1 is a

threshold for connectivity. The detailed proofs and statements can be found in Bollobás

(2001).

Thus in this thesis, it is assumed that c > 1 is a constant that is independent of n.

Furthermore, topology discovery from now on will refer to the task of identifying this

giant component.

2.2 Generating Measurements

The measurement data for the reconstruction is generated by making a certain subset of

volunteer node called ’participants’ ping each other. The volunteering process can be

modeled by assuming that each of the n nodes will with some probability agree to be a

’participant’ independently of the other nodes.

4



Figure 2.2: An illustration of how the measurements are generated

Once the participants are chosen, each of them ping each other through the shortest

path and collect the delays. That is if there are m participants chosen, each of them

pings each other i.e a total of
(
m
2

)
pings are done on the network. Each of the ping

travels through the shortest path between the respective sender and receiver. At the end,

all the
(
m
2

)
shortest path delays are given as input to the topology discovery algorithms.

The fact that the shortest path delays are additive is used in the reconstruction. Ide-

ally after reconstruction one is interested in the individual edge path delay from the

aggregated additive delays. Also in this model, it is assumed that the nodes themselves

add no delays and all the delays are due to the edges.

For instance in the figure 2.2, there are three participants and hence a total of 3 mea-

surements. Each measurement is the sum of delays on the shortest path links between

the participants.

Typically the participants are treated as resources and the interest is in using as few

participants as possible. Thus the main requirement is that the number of participants

5



be very small compared to the total number of nodes i.e m = nα where α < 1.

2.3 Performance Metric

The performance metric used to quantify the ’goodness’ of the algorithm is a metric

called ’Edit Distance’. The Edit distance between two graphs is defined as follows.

Definition 1. Edit Distance: Let F andG be two graphs with AF , AG as the adjacency

matrices. Let V be the set of labeled vertices in both graphs. Then the edit distance

between F and G is

∆(F,G;V ) := min
π
||AF − π(AG)||1 (2.1)

where π is the permutation of the unlabeled nodes.

The permutation over the unlabeled nodes is present in the definition because a

graph and its isomorphisms are equivalent under the reconstruction procedure. This is a

valid model to put as there is no node label information for the non-participating nodes

in the measurement data.

The objective of the reconstruction algorithm is to output a graph which has sub-

linear edit distance with the original graph. That is the algorithm is said to be correct if

the graph it outputs Ĝ and the original graph G differ in edit distance by at most nρ for

some ρ < 1.

We are interested in designing algorithms that can give sub-linear edit distance guar-

antees not linear or higher orders of n because of the following observation by Anand-

kumar et al. (2012).

Anandkumar et al. (2012) showed that any two random graphs with high probability

are separated linearly in edit-distance i.e the average edit distance between any two

random graphs sampled from G(n, c
n
) is (0.5c−1)nwhich is θ(n). Thus if the objective

was to reconstruct only upto linear edit distance, then any graph randomly sampled

from the distribution G(n, c
n
) will suffice. Thus, the interesting regime is to design

6



algorithms that can give sub-linear edit distance guarantees.

2.4 Model Summary

The summary of the problem setup is as follows.

• The sparse graph to be estimated comes from the distribution G(n, c
n
). c is a

constant assumed to be known apriori.

• Given the graph the participant nodes are chosen at random and independent of
other nodes.

• Once the participants are chosen, each participant pings every other participant
through the shortest paths. These shortest path delays are then fed as the input to
the topology inference algorithm.

• Using this input, the aim is to output a graph that differs from the original graph
atmost upto sub-linear edit distance.

7



CHAPTER 3

CENTRAL QUESTION ADDRESSED

This chapter outlines the main question that is targeted through this project. The fol-

lowing sub-section establishes the prior results and questions answered in this field.

3.1 Prior Work

The most significant contribution to this field was from Anandkumar et al. (2012). They

proved the following results -

• The number of participants required under this model to reconstruct accurately
upto sub-linear edit distance is O

(
n

5
6

)
• Probability of reconstruction error will tend to one for any choice of participants

if the number of participants m < O
(√

n
)
.

The first result was shown by proposing a reconstruction algorithm and showing

that the algorithm achieves sub-linear edit distance with high probability if the number

of participants is greater than O
(
n

5
6

)
.

The second result is a result on the necessary number of participants. The result

makes it clear that choosing any fewer than O
(
(
√
n)
)

participants can never give sub-

linear edit distance.

3.2 Relaxations

In this project, further relaxations were made as compared to the model in Anandkumar

et al. (2012). Specifically, the following relaxations are made -

• The number of nodes n is assumed to be known.



• All edge weights are equal and known.

The first assumption on the total number of nodes turns out to be a not so severe

relaxation. This number can usually be estimated fairly accurately and quickly using

other well studied techniques.

The second assumption stating that the edge weights are all equal and known is a

good model for the case when only hop counts are known instead of the actual delays.

For instance in computer networks, the TTL field of the packets can give an estimate

of the number of hops between the transmitter and receiver. Therefore in the situation

when only the number of hops between two nodes are available, the model can be

thought of as a random graph with all edge weights equal to one. This model is what

was studied in this project.

3.3 Main Question

With the prior work as the background and the relaxations made, the central question

this project explored was the following.

What is the minimal sufficient number of participants needed to achieve sub-

linear edit distance with high probability ?

A sufficient number of participants as proposed by Anandkumar et al. (2012) is

O
(
(n

5
6 )
)
. The question this project explored was that whether O

(
(n

5
6 )
)

is the best

possible in terms of the number of participants or can one do as well with fewer partic-

ipants?

The necessary number of participants as proved by Anandkumar et al. (2012) is

O
(
(
√
n)
)
. Can this also be a sufficient number of participants to achieve reconstruction

upto sub-linear edit distance ?

To answer this question, an exponential algorithm was proposed and its require-

ments in terms of the number of participants was analyzed. If we are able to show that

9



O
(
(
√
n)
)

number of participants is sufficient, then it is also the minimal sufficient as

O
(
(
√
n)
)

participants is also a necessary number.

In the rest of the thesis, an algorithm and its analysis is outlined and it can be con-

cluded that maybe O
(
(
√
n)
)

number of participants can suffice for reconstruction upto

sub-linear edit distances.
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CHAPTER 4

SOLUTION and ANALYSIS

This chapter proposes an exponential algorithm and its performance analysis.

4.1 Algorithm

The main data input to the algorithm is the
(
m
2

)
vector of the shortest distance hop

counts. In the description of the algorithm, denote by the set G as the set of all graphs

on n nodes. The graphs in G are arranged in the increasing number of edges i.e for

two graphs on n nodes A and B, if the number of edges in A is less than the number

of edges in graph B, then the graph A occurs before B in the ordered set G. Graphs

having the same number of edges are however ordered relatively at random.

Figure 4.1: An example of the ordered set G set when n = 3. The Graphs with fewer
edges have a lower index value as compared to graphs with higher number
of edges

The actual algorithm is as follows -

Algorithm 1 Graph Estimator
procedure ESTIMATOR(m, y)

for each graph Gi in G do
Take measurements y′ using the m participants on Gi.
if y′ == y then

Output Gi as the estimated graph.
Break

end if
end for

end procedure



4.2 Analysis

This aim of this chapter is to identify circumstances under which the proposed algorithm

would make an error and compute the probabilities of those events.

In this section the notation Gn refers to the original graph whose topology is to be

inferred.

The algorithm will make an error if there exists another graphG′ 6= Gn in which the

number of edges is less than or equal to then umber of edges in Gn and the experiment

with the chosen participants give the same measurement in G′ as in Gn.

The error events can be broken into the two following classes.

1. There exists a graph G′ with the number of edges in G′ being strictly lesser than
that in Gn and G′ satisfies the measurements.

2. There exists a graph G′ having the same number of edges as G and satisfying the
measurements and G′ occurs before Gn in the set G.

From the nature of the algorithm, it is clear that it will not make a mistake if all

other graphs G′ that satisfy the measurements have greater number of edges than Gn

(the original graph).

For analyzing the first type of error event, one can ask the following question

When can the number of edges in Gn be reduced without affecting the mea-

surements ?

It turns out the number of edges can be reduced at a non-participating node when-

ever it is ’bad’.

A non-participating node is defined as ’bad’ if it has two edges incident on it that

are part of the same set of shortest path pings.

Every shortest path ping travels through a some subset of edges on the graph. If

there exists two edges incident on a non-participating node such that both of the edges

are part of the same subset of the
(
m
2

)
shortest path pings, then that non-participating

node is defined as ’bad’.

12
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Figure 4.2: An illustration of the bad node

In 4.2, node b is the ’bad node’. The edges on the top figure a− b and b− c marked

in red have the same set of shortest path pings traveling through them. Thus the total

number of edges in the graph can be reduced as shown in the figure on the bottom by

deleting edges a− b and b− c and adding a new edge d− c.

Thus the number of participants chosen must be atleast high enough so that proba-

bility that a node is ’bad’ can be made smaller than a required tolerance level.

Probability of Algorithm Error

This sub-section outlines how to extend the probability that a node is ’bad’ to the prob-

ability of the algorithm making an error.

One observation to make is that every ’bad’ node can contribute at-most 3
2
d where

d is the degree of the bad node. Thus the total edit-distance can be bounded by the

knowledge of the number of bad-nodes and their degrees. The algorithm is said to

make an error if the edit-distance exceeds sub-linear limit in the number of nodes.

13



The expected edit-distance can be calculated by using the fact that the node-degree

of sparse random G(n, c
n
) is Poisson distributed with parameter c and applying the

union bound over all non-participants.

However, it turns out that to compute that the probability that a node is ’bad’ is

quite difficult. But an upper bound to it can be computed by making the following

observation.

Let E1 be the event that a random node is ’bad’ , i.e there exists a pair of edges

incident on it carrying the same set of flows.

Define another event E2 which denotes the event that any randomly chosen node along

with any two edges incident on it does not carry a common shortest path ping.

Hence, it can be seen that

E1 ⊂ E2

and therefore

Pr(E1) ≤ Pr(E2)

Thus an upper bound on Pr(E2) will also be an upper bound on Pr(node is ’bad’).

And it also turns out that computing an upper bound on Pr(E2) is simple.

14



1 2 

3 
4 

5 

Figure 4.3: An illustration of why E1 ⊂ E2

The figure 4.3 illustrates why whenever E1 occurs, E2 definitely occurs. In 4.3,

edges 1 and 2 carry the same set of shortest path pings and hence make the node bad.

Thus this also means that both edge 1 and 2 share no common shortest path pings with

the edges 3, 4 and 5.

To compute an upper bound on Pr(E2), the following lemma is useful.

Lemma 1. In a random graph G(n, c
n
), the inter-vertex distance distribution follows

Pr(dij > l) = exp (− cl

n
) where dij refers to the shortest distance between two ran-

domly chosen nodes in the graph.

Proof. This lemma is proved in Newman (2010) and is reproduced here .

Consider two vertices i and j. Draw two ’balls’ or neighborhood around i and j

consisting of vertices with distances up to and including s and t respectively. Consider

the set of vertices on the ’surface’(i.e. the most distant vertices) of either of the balls.

If there exists no edge between the two surfaces, then the distance between i and j is

necessarily greater than or equal to s+ t+ 1. Thus a necessary and sufficient condition

for dij > s+ t+1 is that there exist no edge between the two ’surfaces’. Thus Pr(dij >

15



s+ t+ 1) is the probability that there exists no edge between the two surfaces.

The average number of nodes on the surface of the ball from i at distance s is cs and

the number of nodes at the surface of the ball from j at distance t is ct. Thus there are

cs × ct pair of vertices and each pair can be connected with probability c/n.

Thus the probability that there exists no edge is (1− c
n
)c
s+t .

Replacing s+ t by l, the probability expressions becomes

Pr(dij > l) = exp (−c
l

n
) (4.1)

One interpretation of this result is that the distance between any two randomly cho-

sen nodes is O
(
log n/ log c

)
with high probability.

Using the above result, an upper bound on the probability of event E2 can be com-

puted.

To compute an upper bound on Pr(E2), a lower bound on the complimentary event

Ē2 is computed.

The event Ē2 denotes that every pair of edge incident on a non-participant has a

common shortest path ping through them.

To compute for a single node, a breadth first tree is drawn about the node.

16



a 

s t 

x y 

Figure 4.4: The breadth first tree rooted at node a

To compute an upper bound, the probability of one event that necessarily produces

a common shortest path ping is evaluated.

For instance in figure 4.4, the edges of interest is a − x and a − y and want to

determine at-least one scenario in which the edges a − x and a − y share a common

shortest path ping.

To compute a lower bound on Pr(Ē2), the probability of a particular event that will

imply that atleast one flow exists through a− x and a− y is computed. The following

event ensures that a flow will always exist through a− x and a− y.

If there exists two participants at depth of s in the sub-tree(of the BFS tree rooted

at a) from node x and at depth t in the sub-tree of the BFS tree rooted at a) from node

y and they are connected by a shortest path whose length is greater than or equal to

s + t + 2, then a − x, a − y has a shortest path flow. The probability of Ē2 can then

be estimated by summing the probability of the above event over all possible values of

s and t. Thus, a lower bound on Ē2 can be found by computing the probability of the

17



above event for one particular value of s and t.

For the calculation, the value of s = t = logn
2 log c(1+ε)

is used. Denote by the event B

that at-least one shortest path flow exits through a − x and a − y originating from a

participant which are located at depth s of the sub-tree from node x and at depth t of

sub-tree from node y. Clearly since B does not sum over all possible values of s and t,

Pr(Ē2) ≥ Pr(B)

Thus Pr(B) serves as a lower bound on Pr(Ē2).

The BFS tree for small depths can be modeled as a Branching process with offspring

distributed as Poisson with parameter (c-1). This branching process is also referred to

as the Galton-Watson process.

At the depth where s = t = logn
2 log c(1+ε)

, the number of nodes of the Galton Watson

process can be approximated as Zs = (c − 1)s and Zt = (c − 1)t as s and t are large

(increasing function of n). (Here Zi denotes the number of nodes at depth i in the

breadth first tree). Thus the number of nodes at this depth in the random graph is

Zs = Zt = (c− 1)
logn

2 log c(1+ε)

= n
1

2(1+ε) logc−1 c

Since Zs is much smaller than the n (the total number of nodes in the graph), the locally

tree like property of the graph holds true implying that the Galton-Watson model is an

accurate model of the BFS tree at this depth.

The probability that there will exists at-least one participant at depth logn
2 log c(1+ε)

in the

breadth first tree is given by

1−

(
1− n

1
(2(1+ε)

)

n

)nα
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where nα is the number of participants.

The probability that the shortest distance between two nodes is greater than l is given

by from lemma 1

Pr(d > l) = exp

(
−cl

n

)

In this calculation, l = logn
log c(1+ε)

.

Since the participants are chosen independently of the underlying graph, the probability

of event B is given by

Pr(B) =

1−

(
1− n

1
(2(1+ε)

)

n

)nα
2

exp

(
−c

logn
log c(1+ε)

n

)
(4.2)

The value of α that makes limn→∞ Pr(B)→ 1 is α > 1− 1
2 logc−1 c

.

Pr(Ē2) ≥ Pr(B),

1− Pr(Ē2) ≤ 1− Pr(B)

Thus,

Pr(E2) ≤ 1− Pr(B) (4.3)

Therefore, ∀α > 1− 1
2 logc−1 c

, Pr(E2) tends to zero.

To compute an upper bound on the probability that a node is ’bad’, the event B must be
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summed over all edge pairs incident on the node using union bound, i.e,

Pr(node is bad) ≤
∞∑
d=3

(
d

2

)(
Pr(Ē2)

)
cde−c/d! (4.4)

which also tends to zero for all α > 1− 1
2 logc−1 c

.

Moreover, Pr(node is ’bad’) decays to zero as exp(−nγ) where

γ = α−
(

1− 1
2 logc−1 c

)
.

This implies that the expected number of bad nodes given by

n.Pr(node is ’bad’) = k
′
n exp(−nγ) also tends to zero as n tends to infinity.

where k′ is a constant depending on c.

The conclusion from this analysis is that the edit distance can be made to decay to

zero exponentially fast whenever

α >

(
1− 1

2 logc−1 c

)

4.3 Possible Gaps in the Analysis

The above analysis takes care that there exists no other graph with edges smaller than

the number of edges present in the original graph can generate the same set of measure-

ments. However, the other error event i.e the non-existence of another graph having the

same number of edges is not covered in this analysis.

The other question to ask is does there exists graphs that are non-isomorphic to the

original graph satisfying the measurements and every pair of edge having a common

end point satisfying property B as defined in the previous sub-section?

This question is however unanswered at the moment and is left for future work.

20



CHAPTER 5

CONCLUSION

This project was an attempt at answering the question as to what is the minimal suf-

ficient number of participants required for sparse graph reconstruction. The approach

taken was to outline an exponential algorithm and then analyze the same for determin-

ing how high should the number of participants be for reconstructing within sub-linear

edit distance with high probability. The conclusion from the analysis was that if the

number of participants m is of the form where m = nα, then maybe α > 0.5 can suf-

fice. There is still ambiguity as there is no proof as of yet as to all possible error events

have been covered in the analysis presented.

5.1 Future Work

One immediate future work is to conclusively establish all the error events of the algo-

rithm proposed in this project.

The other direction of future work is to extend this analysis for weighted graphs.

How does on model a weighted graph ? Do we sample a random structure and then

assign random weights or does a joint distribution of the structure and the weights a

more accurate representation of the real world scenario ? This modeling can also help

in ordering the graphs in the set G.

The other important direction of future work is in establishing polynomial run-time

algorithms requiring only α > 0.5 as the order of the number of participants. This

project although outlined an algorithm, it is doubly exponential and can only be used as

an argument to prove existence of algorithms and nothing more. Thus can one do better

in polynomial time requiring fewer than O
(
(n

5
6 )
)

participants?
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